Abstract

The objective of this paper is to present a general strategy for design optimization of flattop interleavers, and dispersion compensation for the interleavers, in order to achieve superior optical performance. The interleaver is formed by two multi-cavity Gire-Tournois etalons (MC-GTE) in a Michelson Interferometer (MI). An interleaver that has m cavities in one etalon and n cavities in the other is called an mn-GTE interleaver. Our optimization strategy exploits the general flattop condition and the technique of ripple equalization. Any mn-GTE interleaver may be optimized. The spectral performance can be greatly improved by the optimization process. As an illustration, we present a comprehensive analysis for a 11-GTE and a 21-GTE interleaver. The analytical expressions for flattop conditions, peak and trough positions are derived for optimization. The optimal performance of the interleavers can be controlled by the reflection coefficients and the parameters m and n. To achieve low-dispersion mn-GTE flattop interleavers, we propose to use one additional MC-GTE as a dispersion compensator to compensate for the chromatic dispersion. The analytical expressions of group delays and chromatic dispersions for an MC-GTE interleaver are derived. The optimization strategy of dispersion-ripple equalization is explained. The results show that the dispersion performance can be tailored by changing the reflection coefficients of the MC-GTE, and the dispersion and bandwidth can be enhanced by increasing the number of cavities of the MC-GTE.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu and P. Xie, "Integrated technology: comparisons and applications requirements," J. Lightwave Technol. 22, 281-289 (2004).
    [CrossRef]
  2. K. Jinguji and M. Oguma, "Optical half-band filters," J. Lightwave Technol. 18, 252-259 (2000).
    [CrossRef]
  3. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku and Y. Hibino, "Compact and low-loss interleaver filter employing lattice-form structure and silica-based waveguide," J. Lightwave Technol. 22, 895-902 (2004).
    [CrossRef]
  4. C. H. Huang, Y. Li, J. Chen, E. Sidick, J. Chon, K. G. Sullivan, and J. Bautista, "Loss-loss flat-top 50-GHz DWDM and Add/Drop modules using all-fiber Fourier filters," NFOEC, 311-316 (2000).
  5. Q. J. Wang, T. Liu and Y. C. Soh, "All-fiber Fourier filter flat-top interleaver design with specified performance parameters," Opt. Eng. 42, 3172-3178 (2003).
    [CrossRef]
  6. J. Zhang and L. Liu, "Novel Mach-Zehnder interferometer structure for tunable optical interleaver," Opt. Eng. 45, 045003 (2006).
    [CrossRef]
  7. Y. Lai, W. Zhang, J. A. R. Williams and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photon. Technol. Lett. 16, 500-502 (2004).
    [CrossRef]
  8. Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005).
    [CrossRef] [PubMed]
  9. H. F. Taylor, "Design of multireflector resonant bandpass filters for guided wave optics," J. Lightwave Technol. 19, 866-871 (2001).
    [CrossRef]
  10. L. P. Ghislain, R. Sommer, R. J. Ryall, R. M. Fortenberry, D. Derickson, P. C. Egerton, M. R. Kozlowski, D. J. Poirger, S. DeMange, L. F. Stokes, and M. A. Scobey, "Miniature solid etalon interleaver," NFOEC, 1397-1403 (2001).
  11. R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
    [CrossRef]
  12. B. B. Dingel and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications," Opt. Lett. 23, 1099-1101 (1998).
    [CrossRef]
  13. B. B. Dingel and T. Aruga, "Properties of a novel noncascaed type, easy-to-design, ripple-free optical bandpass filter," J. Lightwave Technol. 17, 1461-1469 (1999).
    [CrossRef]
  14. C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
    [CrossRef]
  15. C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
    [CrossRef]
  16. L. Wei and J. W. Y. Lit, "Design of periodic bandpass filters based multi-reflectors Gires-Tournois resonator for WDM systems," Opt. Commun. 255, 209-217, (2005).
    [CrossRef]
  17. S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, "Birefrigent Gires-Tournois interferometer (BGTI) for DWDM interleaving," OFC, Anaheim, CA, ThC3 (2002).
  18. X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois Structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
    [CrossRef]
  19. Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
    [CrossRef]
  20. M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
    [CrossRef]
  21. C. K. Madsen, "Efficient architectures for exactly realizing optical filters with optimum bandpass designs," IEEE Photon. Technol. Lett. 10, 1136-1138 (1998).
    [CrossRef]
  22. Q. J. Wang, Y. Zhang, and Y. C. Soh, "Design of 100/300 GHz optical interleaver with IIR architectures," Opt. Express 13, 2643-2652 (2005).
    [CrossRef] [PubMed]
  23. X. Ye, M. Zhang, and P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
    [CrossRef]
  24. C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006).
    [CrossRef] [PubMed]
  25. G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1250 (1999).
    [CrossRef]
  26. C. J. Kaalund and G. D. Peng, "Pole-zero diagram approach to the design of ring resonator-based fitlers for photonic applications," J. Lightwave Technol. 22, 1548-1559 (2004).
    [CrossRef]
  27. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
    [CrossRef]
  28. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
    [CrossRef]
  29. H. Angus Macleod, Thin Film Optical Filter, 2nd edition, (McGraw-Hill Publishing Company, New York, 1989) pp. 51.
  30. E. Hecht, Optics, 4th edition, (Addison Wesley 2002) pp. 420.

2006 (3)

J. Zhang and L. Liu, "Novel Mach-Zehnder interferometer structure for tunable optical interleaver," Opt. Eng. 45, 045003 (2006).
[CrossRef]

X. Ye, M. Zhang, and P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006).
[CrossRef] [PubMed]

2005 (5)

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Design of 100/300 GHz optical interleaver with IIR architectures," Opt. Express 13, 2643-2652 (2005).
[CrossRef] [PubMed]

Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005).
[CrossRef] [PubMed]

L. Wei and J. W. Y. Lit, "Design of periodic bandpass filters based multi-reflectors Gires-Tournois resonator for WDM systems," Opt. Commun. 255, 209-217, (2005).
[CrossRef]

X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois Structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

2004 (5)

2003 (3)

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

Q. J. Wang, T. Liu and Y. C. Soh, "All-fiber Fourier filter flat-top interleaver design with specified performance parameters," Opt. Eng. 42, 3172-3178 (2003).
[CrossRef]

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (2)

K. Jinguji and M. Oguma, "Optical half-band filters," J. Lightwave Technol. 18, 252-259 (2000).
[CrossRef]

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

1999 (2)

1998 (2)

B. B. Dingel and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications," Opt. Lett. 23, 1099-1101 (1998).
[CrossRef]

C. K. Madsen, "Efficient architectures for exactly realizing optical filters with optimum bandpass designs," IEEE Photon. Technol. Lett. 10, 1136-1138 (1998).
[CrossRef]

1995 (1)

R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Aruga, T.

Bennion, I.

X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois Structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
[CrossRef]

Y. Lai, W. Zhang, J. A. R. Williams and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photon. Technol. Lett. 16, 500-502 (2004).
[CrossRef]

Buhl, L. L.

Cao, S.

Chandrasekhar, S.

Chen, J.

Cheng, W.

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Cheng, W. H.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006).
[CrossRef] [PubMed]

C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Colbourne, P.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

Damask, J. N.

Dingel, B. B.

Doerr, C. R.

Guiziou, L.

Harvey, G.

Hibino, Y.

Hsieh, C.

C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Huang, S. Y.

C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Hulse, C. A.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

Inoue, Y.

Izutsu, M.

Jinguji, K.

Jung, J.

Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005).
[CrossRef] [PubMed]

Kaalund, C. J.

Kadota, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Kim, H.

Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005).
[CrossRef] [PubMed]

Kiran, S.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

Kitoh, T.

Kohtoku, M.

M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku and Y. Hibino, "Compact and low-loss interleaver filter employing lattice-form structure and silica-based waveguide," J. Lightwave Technol. 22, 895-902 (2004).
[CrossRef]

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Lai, Y.

Y. Lai, W. Zhang, J. A. R. Williams and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photon. Technol. Lett. 16, 500-502 (2004).
[CrossRef]

Lamont, M.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

Lee, B.

Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005).
[CrossRef] [PubMed]

Lee, C.

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Lee, C. W.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006).
[CrossRef] [PubMed]

C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

Lee, Y. W.

Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005).
[CrossRef] [PubMed]

Lenz, G.

Li, H.

Lit, J. W. Y.

L. Wei and J. W. Y. Lit, "Design of periodic bandpass filters based multi-reflectors Gires-Tournois resonator for WDM systems," Opt. Commun. 255, 209-217, (2005).
[CrossRef]

Liu, L.

J. Zhang and L. Liu, "Novel Mach-Zehnder interferometer structure for tunable optical interleaver," Opt. Eng. 45, 045003 (2006).
[CrossRef]

Liu, T.

Q. J. Wang, T. Liu and Y. C. Soh, "All-fiber Fourier filter flat-top interleaver design with specified performance parameters," Opt. Eng. 42, 3172-3178 (2003).
[CrossRef]

Lunardi, L. M.

Madsen, C. K.

G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1250 (1999).
[CrossRef]

C. K. Madsen, "Efficient architectures for exactly realizing optical filters with optimum bandpass designs," IEEE Photon. Technol. Lett. 10, 1136-1138 (1998).
[CrossRef]

McLaughlin, S.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

McMichael, I.

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Mizuno, T.

Moss, D. J.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

Oguma, M.

Oku, S.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Orta, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Peng, G. D.

Randall, G.

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

Savi, P.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Shibata, T.

Shibata, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Shu, X.

X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois Structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
[CrossRef]

Soh, Y. C.

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Design of 100/300 GHz optical interleaver with IIR architectures," Opt. Express 13, 2643-2652 (2005).
[CrossRef] [PubMed]

Q. J. Wang, T. Liu and Y. C. Soh, "All-fiber Fourier filter flat-top interleaver design with specified performance parameters," Opt. Eng. 42, 3172-3178 (2003).
[CrossRef]

Sugden, K.

X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois Structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
[CrossRef]

Suzuki, S.

Tascone, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Taylor, H. F.

Trinchero, D.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Wang, Q. J.

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Design of 100/300 GHz optical interleaver with IIR architectures," Opt. Express 13, 2643-2652 (2005).
[CrossRef] [PubMed]

Q. J. Wang, T. Liu and Y. C. Soh, "All-fiber Fourier filter flat-top interleaver design with specified performance parameters," Opt. Eng. 42, 3172-3178 (2003).
[CrossRef]

Wang, R.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006).
[CrossRef] [PubMed]

C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Wei, L.

L. Wei and J. W. Y. Lit, "Design of periodic bandpass filters based multi-reflectors Gires-Tournois resonator for WDM systems," Opt. Commun. 255, 209-217, (2005).
[CrossRef]

Wen, Z. J.

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Williams, J. A. R.

Y. Lai, W. Zhang, J. A. R. Williams and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photon. Technol. Lett. 16, 500-502 (2004).
[CrossRef]

Wu, K. Y.

Xie, P.

Ye, P.

X. Ye, M. Zhang, and P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Ye, X.

X. Ye, M. Zhang, and P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Yeh, P.

C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006).
[CrossRef] [PubMed]

C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

Yoshikuni, Y.

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

Zhang, J.

J. Zhang and L. Liu, "Novel Mach-Zehnder interferometer structure for tunable optical interleaver," Opt. Eng. 45, 045003 (2006).
[CrossRef]

Zhang, M.

X. Ye, M. Zhang, and P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Zhang, W.

Y. Lai, W. Zhang, J. A. R. Williams and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photon. Technol. Lett. 16, 500-502 (2004).
[CrossRef]

Zhang, Y.

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Design of 100/300 GHz optical interleaver with IIR architectures," Opt. Express 13, 2643-2652 (2005).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (8)

Y. Lai, W. Zhang, J. A. R. Williams and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photon. Technol. Lett. 16, 500-502 (2004).
[CrossRef]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois Structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
[CrossRef]

Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005).
[CrossRef]

M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000).
[CrossRef]

C. K. Madsen, "Efficient architectures for exactly realizing optical filters with optimum bandpass designs," IEEE Photon. Technol. Lett. 10, 1136-1138 (1998).
[CrossRef]

D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003).
[CrossRef]

J. Lightwave Technol. (8)

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002).
[CrossRef]

B. B. Dingel and T. Aruga, "Properties of a novel noncascaed type, easy-to-design, ripple-free optical bandpass filter," J. Lightwave Technol. 17, 1461-1469 (1999).
[CrossRef]

G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1250 (1999).
[CrossRef]

C. J. Kaalund and G. D. Peng, "Pole-zero diagram approach to the design of ring resonator-based fitlers for photonic applications," J. Lightwave Technol. 22, 1548-1559 (2004).
[CrossRef]

H. F. Taylor, "Design of multireflector resonant bandpass filters for guided wave optics," J. Lightwave Technol. 19, 866-871 (2001).
[CrossRef]

S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu and P. Xie, "Integrated technology: comparisons and applications requirements," J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

K. Jinguji and M. Oguma, "Optical half-band filters," J. Lightwave Technol. 18, 252-259 (2000).
[CrossRef]

M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku and Y. Hibino, "Compact and low-loss interleaver filter employing lattice-form structure and silica-based waveguide," J. Lightwave Technol. 22, 895-902 (2004).
[CrossRef]

Opt. Commun. (3)

C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004).
[CrossRef]

L. Wei and J. W. Y. Lit, "Design of periodic bandpass filters based multi-reflectors Gires-Tournois resonator for WDM systems," Opt. Commun. 255, 209-217, (2005).
[CrossRef]

X. Ye, M. Zhang, and P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006).
[CrossRef]

Opt. Eng. (2)

Q. J. Wang, T. Liu and Y. C. Soh, "All-fiber Fourier filter flat-top interleaver design with specified performance parameters," Opt. Eng. 42, 3172-3178 (2003).
[CrossRef]

J. Zhang and L. Liu, "Novel Mach-Zehnder interferometer structure for tunable optical interleaver," Opt. Eng. 45, 045003 (2006).
[CrossRef]

Opt. Express (2)

Opt. Express. (1)

Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Other (5)

L. P. Ghislain, R. Sommer, R. J. Ryall, R. M. Fortenberry, D. Derickson, P. C. Egerton, M. R. Kozlowski, D. J. Poirger, S. DeMange, L. F. Stokes, and M. A. Scobey, "Miniature solid etalon interleaver," NFOEC, 1397-1403 (2001).

S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, "Birefrigent Gires-Tournois interferometer (BGTI) for DWDM interleaving," OFC, Anaheim, CA, ThC3 (2002).

C. H. Huang, Y. Li, J. Chen, E. Sidick, J. Chon, K. G. Sullivan, and J. Bautista, "Loss-loss flat-top 50-GHz DWDM and Add/Drop modules using all-fiber Fourier filters," NFOEC, 311-316 (2000).

H. Angus Macleod, Thin Film Optical Filter, 2nd edition, (McGraw-Hill Publishing Company, New York, 1989) pp. 51.

E. Hecht, Optics, 4th edition, (Addison Wesley 2002) pp. 420.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed interleaver

Fig. 2.
Fig. 2.

Schematic diagram of MC-GTE.

Fig. 3.
Fig. 3.

(a). Periodic spectra of 11-GTE interleaver with different reflection coefficients and (b) detailed spectra of (a).

Fig. 4.
Fig. 4.

Phases and ripples as functions of reflection coefficients.

Fig. 5.
Fig. 5.

Optimized spectra of 11-GTE interleaver: (a) comparison between optimized and non-optimized interleavers and (b) effects of different reflection coefficients.

Fig. 6.
Fig. 6.

Phase as a function of reflection coefficient.

Fig. 7.
Fig. 7.

Relation between ripple and isolation.

Fig. 8.
Fig. 8.

Bandwidth ratio and isolation as functions of reflection coefficient. Ripple equalization has been used.

Fig. 9.
Fig. 9.

Optimized and ripple as functions of for 11-GTE interleaver. Dotted lines: flattop condition used only. Solid lines: ripple equalization also applied.

Fig. 10.
Fig. 10.

Optimized spectra of 21-GTE interleaver with different reflection coefficient r 1 b : (a) detailed passband and (b) one FSR.

Fig. 11.
Fig. 11.

Optimized reflection coefficients ra 1 and ra 2 and ripple as functions of reflection coefficient rb 1 for a 21-GTE interleaver.

Fig. 12.
Fig. 12.

Bandwidth ratio as a function of isolation for GTE interleavers with different configurations.

Fig. 13.
Fig. 13.

Optimized spectra for interleavers with different configurations: (a) detailed passband and (b) one FSR.

Fig. 14.
Fig. 14.

(a). Group delay and (b) dispersion responses for 10-GTE and 21-GTE interleaver; (c) group delay and (d) dispersion responses for typical MC-GTE dispersion compensator.

Fig. 15.
Fig. 15.

(a). Resultant dispersion of 21-GTE interleaver compensated by MC-GTEs with different number of cavities. (b). Details of the quasi-flat dispersion region.

Fig. 16.
Fig. 16.

Interleavers compensated by MC-GTEs with different number of cavities. (a) Bandwidth ratio as a function of dispersion; (b) Dispersion and (c) optimized reflectivities as functions of reflectivity R 1.

Tables (1)

Tables Icon

Table 1 Bandwidth ratio for different configurations

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

r 10 = r 1 + r 0 e i 2 δ 1 + r 1 r 0 e i 2 δ = e i 2 ϕ 1 ,
ϕ 1 = tan 1 ( a 1 tan δ ) ,
r n 0 = r n + r ( n 1 ) 0 e i 2 δ 1 + r n r ( n 1 ) 0 e i 2 δ = e i 2 ϕ n .
ϕ n = tan 1 [ a n tan ( δ ϕ n 1 ) ] ,
a n = ( 1 + r n ) ( 1 r n ) .
E = e i ( ϕ m + θ n ) ( L 1 + L 2 ) cos ( ψ β L )
{ 2 ϕ m = 2 tan 1 [ a m tan ( δ ϕ m 1 ) ] 2 θ n = 2 tan 1 [ b n tan ( δ θ n 1 ) ] ,
{ ψ = θ n ϕ m L = L 2 L 1 ,
{ a m = ( 1 + r m a ) ( 1 r m a ) b n = ( 1 + r n b ) ( 1 r n b ) ,
I = ( 1 + cos ( 2 ψ δ ) ) 2 .
2 ψ δ = 2 .
2 a 1 = 1 tan 2 ( δ 2 ) ,
2 ( a 1 b 1 ) = ( 1 tan 2 ( δ 2 ) ) ( 1 + a 1 b 1 tan 2 δ ) ,
2 [ a 2 ( 1 + a 1 ) b 1 ( 1 a 1 tan 2 δ ) ] = ( 1 tan 2 ( δ 2 ) ) [ 1 + ( a 2 ( 1 + a 1 ) b 1 a 1 ) tan 2 δ ] .
2 a 1 = 1 ,
2 ( a 1 b 1 ) = 1 ,
2 ( a 2 ( 1 + a 1 ) b 1 ) = 1 .
2 [ a m ( 1 + a m 1 ( 1 + a m 2 ) ) b n ( 1 + b n 1 ( 1 + b n 2 ) ) ] = 1 .
tan 2 δ peak 2 = 1 4 a 1 b 1 .
sin 2 δ trough = 1 a 1 b 1 a 1 2 b 1 2 ( 1 a 1 2 ) ( 1 b 1 2 ) .
tan 4 ( δ 2 ) + B 1 tan 2 ( δ 2 ) + C 1 = 0 ,
tan 2 δ 2 = B 1 ± B 1 2 4 C 1 2 .
A 2 sin 4 δ + B 2 sin 2 δ + C 2 = 0 ,
sin 2 δ = B 2 ± B 2 2 4 C 2 2 A 2 .
tan 6 ( δ 2 ) + E 1 tan 4 ( δ 2 ) + F 1 tan 4 ( δ 2 ) + G 1 = 0 ,
D 2 sin 6 δ + E 2 sin 4 δ + F 2 sin 2 δ + G 2 = 0 ,
GD 1 = 2 τ c 1 ( one cavity ) ,
GD 2 = 2 τ c 2 ( 1 + c 1 ) ( two cavities ) ,
GD 3 = 2 τ c 3 ( 1 + c 2 ( 1 + c 1 ) ) ( three cavities ) ,
GD n = 2 τ c n + c n GD n 1 ( n cavities ) ,
c n = a n 1 + ( a n 1 ) 2 sin 2 ( δ ϕ n 1 ) ,
CD 1 = 2 h τ g 1 ( one cavity ) ,
CD 2 = 2 h τ [ g 2 ( 1 + c 1 ) 2 + g 1 c 2 ] ( two cavities ) ,
CD 3 = 2 h τ [ g 3 ( 1 + c 2 ( 1 + c 1 ) ) 2 + c 3 ( g 2 ( 1 + c 1 ) 2 + g 1 c 2 ) ] ( three cavities ) ,
CD n = 2 h τ [ g n ( GD n 2 τ c n ) 2 + c n ( CD n 1 2 h τ ) ] ( n cavities ) ,
h = 2 π nd λ 2 ,
g n = ( a n 2 1 ) a n sin 2 ( δ ϕ n 1 ) [ 1 + ( a n 2 1 ) 2 sin 2 ( δ ϕ n 1 ) ] 2 .

Metrics