Abstract

This paper introduces approaches that combine micro/nanomolding, or nanoimprinting, techniques with proximity optical phase mask lithographic methods to form three dimensional (3D) nanostructures in thick, transparent layers of photopolymers. The results demonstrate three strategies of this type, where molded relief structures in these photopolymers represent (i) fine (<1 μm) features that serve as the phase masks for their own exposure, (ii) coarse features (>1 μm) that are used with phase masks to provide access to large structure dimensions, and (iii) fine structures that are used together phase masks to achieve large, multilevel phase modulations. Several examples are provided, together with optical modeling of the fabrication process and the transmission properties of certain of the fabricated structures. These approaches provide capabilities in 3D fabrication that complement those of other techniques, with potential applications in photonics, microfluidics, drug delivery and other areas.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Microfabrication inside capillaries using multiphase laminar flow patterning," Science 285, 83-85 (1999).
    [CrossRef] [PubMed]
  2. Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem., Int. Ed. Engl. 37, 551-575 (1998).
    [CrossRef]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  4. D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
    [CrossRef] [PubMed]
  5. J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829-832 (1997).
    [CrossRef]
  6. J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, "Three-Dimensional Battery Architectures," Chem. Rev. 104, 4463-4492 (2004).
    [CrossRef]
  7. B. T. Holland, C. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
    [CrossRef] [PubMed]
  8. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
    [CrossRef]
  9. S. Uemura, "The activities of FGM on new application," Mater. Sci. Forum 423-425 (Functionally Graded Materials VII), 1-10 (2003).
    [CrossRef]
  10. B. Kaehr and J. B. Shear, "Mask-directed multiphoton lithography," J. Am. Chem. Soc. 129, 1904-1905 (2007).
    [CrossRef] [PubMed]
  11. D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano. Lett. 6, 2279-2283 (2006).
    [CrossRef] [PubMed]
  12. S. Jeon, V. Malyarchuk, J. O. White, and J. A. Rogers, "Optically fabricated three dimensional nanofluidic mixers for microfluidic devices," Nano. Lett. 5, 1351-1356 (2005).
    [CrossRef] [PubMed]
  13. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
    [CrossRef] [PubMed]
  14. W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
    [CrossRef]
  15. K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
    [CrossRef]
  16. S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
    [CrossRef]
  17. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
    [CrossRef] [PubMed]
  18. K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: Embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
    [CrossRef]
  19. K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
    [CrossRef]
  20. F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
    [CrossRef]
  21. "The GSOLVER ver. 4.20 developed by Grating Solver Development Company (P.O. Box 353, Allen, TX 75013)."
  22. H. Tan, A. Gilbertson, and S. Y. Chou, "Roller nanoimprint lithography," J. Vac. Sci. Technol. B 16, 3926-3928 (1998).
    [CrossRef]
  23. L. F. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996).
    [CrossRef]

2007

B. Kaehr and J. B. Shear, "Mask-directed multiphoton lithography," J. Am. Chem. Soc. 129, 1904-1905 (2007).
[CrossRef] [PubMed]

2006

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
[CrossRef]

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
[CrossRef] [PubMed]

2005

S. Jeon, V. Malyarchuk, J. O. White, and J. A. Rogers, "Optically fabricated three dimensional nanofluidic mixers for microfluidic devices," Nano. Lett. 5, 1351-1356 (2005).
[CrossRef] [PubMed]

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

2004

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, "Three-Dimensional Battery Architectures," Chem. Rev. 104, 4463-4492 (2004).
[CrossRef]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

2003

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

1999

P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Microfabrication inside capillaries using multiphase laminar flow patterning," Science 285, 83-85 (1999).
[CrossRef] [PubMed]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

1998

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: Embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem., Int. Ed. Engl. 37, 551-575 (1998).
[CrossRef]

B. T. Holland, C. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

H. Tan, A. Gilbertson, and S. Y. Chou, "Roller nanoimprint lithography," J. Vac. Sci. Technol. B 16, 3926-3928 (1998).
[CrossRef]

1997

J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829-832 (1997).
[CrossRef]

1996

Aizenberg, J.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: Embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Alleyne, A. G.

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

Aluru, N. R.

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Asher, S. A.

J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829-832 (1997).
[CrossRef]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Bilhaut, L.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Blanford, C.

B. T. Holland, C. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

Braun, P. V.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Breen, T. L.

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: Embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Chen, S. C.

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

Chou, S. Y.

H. Tan, A. Gilbertson, and S. Y. Chou, "Roller nanoimprint lithography," J. Vac. Sci. Technol. B 16, 3926-3928 (1998).
[CrossRef]

Christodoulides, D. N.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Cirelli, R.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Dunn, B.

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, "Three-Dimensional Battery Architectures," Chem. Rev. 104, 4463-4492 (2004).
[CrossRef]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Fulton, J. M.

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

Gaur, A.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Geil, P.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Gilbertson, A.

H. Tan, A. Gilbertson, and S. Y. Chou, "Roller nanoimprint lithography," J. Vac. Sci. Technol. B 16, 3926-3928 (1998).
[CrossRef]

Grier, D. G.

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Hadzik, T.

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

Hamza, A.

S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
[CrossRef]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Heitzman, C. E.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Holland, B. T.

B. T. Holland, C. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

Holtz, J. H.

J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829-832 (1997).
[CrossRef]

Hsia, K. J.

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

Hua, F.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Huang, Y.

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

Ismagilov, R. F.

P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Microfabrication inside capillaries using multiphase laminar flow patterning," Science 285, 83-85 (1999).
[CrossRef] [PubMed]

Jeon, S.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
[CrossRef] [PubMed]

S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
[CrossRef]

S. Jeon, V. Malyarchuk, J. O. White, and J. A. Rogers, "Optically fabricated three dimensional nanofluidic mixers for microfluidic devices," Nano. Lett. 5, 1351-1356 (2005).
[CrossRef] [PubMed]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Kaehr, B.

B. Kaehr and J. B. Shear, "Mask-directed multiphoton lithography," J. Am. Chem. Soc. 129, 1904-1905 (2007).
[CrossRef] [PubMed]

Kenis, P. J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Microfabrication inside capillaries using multiphase laminar flow patterning," Science 285, 83-85 (1999).
[CrossRef] [PubMed]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Lederer, F.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Li, L. F.

Long, J. W.

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, "Three-Dimensional Battery Architectures," Chem. Rev. 104, 4463-4492 (2004).
[CrossRef]

Malyarchuk, V.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
[CrossRef] [PubMed]

S. Jeon, V. Malyarchuk, J. O. White, and J. A. Rogers, "Optically fabricated three dimensional nanofluidic mixers for microfluidic devices," Nano. Lett. 5, 1351-1356 (2005).
[CrossRef] [PubMed]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Meitl, M. A.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Menard, E.

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

Nam, Y.

S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
[CrossRef]

Park, J. U.

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

Park, J.-U.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Paul, K. E.

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: Embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Prentiss, M.

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Rogers, J.

S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
[CrossRef]

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

Rogers, J. A.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, "Fabricating three dimensional nanostructures using two photon lithography in a single exposure step," Opt. Express 14, 2300-2308 (2006).
[CrossRef] [PubMed]

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

S. Jeon, V. Malyarchuk, J. O. White, and J. A. Rogers, "Optically fabricated three dimensional nanofluidic mixers for microfluidic devices," Nano. Lett. 5, 1351-1356 (2005).
[CrossRef] [PubMed]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Rolison, D. R.

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, "Three-Dimensional Battery Architectures," Chem. Rev. 104, 4463-4492 (2004).
[CrossRef]

Rotkina, L.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Shao, D. B.

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

Shear, J. B.

B. Kaehr and J. B. Shear, "Mask-directed multiphoton lithography," J. Am. Chem. Soc. 129, 1904-1905 (2007).
[CrossRef] [PubMed]

Shim, A.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Shim, M.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Shir, D.

S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
[CrossRef]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

Smith, S. P.

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

Stein, A.

B. T. Holland, C. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

Sun, Y. G.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

Tan, H.

H. Tan, A. Gilbertson, and S. Y. Chou, "Roller nanoimprint lithography," J. Vac. Sci. Technol. B 16, 3926-3928 (1998).
[CrossRef]

Wang, J. F.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

White, H. S.

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, "Three-Dimensional Battery Architectures," Chem. Rev. 104, 4463-4492 (2004).
[CrossRef]

White, J. O.

S. Jeon, V. Malyarchuk, J. O. White, and J. A. Rogers, "Optically fabricated three dimensional nanofluidic mixers for microfluidic devices," Nano. Lett. 5, 1351-1356 (2005).
[CrossRef] [PubMed]

Whitesides, G. M.

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Microfabrication inside capillaries using multiphase laminar flow patterning," Science 285, 83-85 (1999).
[CrossRef] [PubMed]

Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem., Int. Ed. Engl. 37, 551-575 (1998).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: Embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Wiederrecht, G. P.

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

Xia, Y. N.

Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem., Int. Ed. Engl. 37, 551-575 (1998).
[CrossRef]

Yang, S.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Zhou, W.

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

Angew. Chem., Int. Ed. Engl.

Y. N. Xia and G. M. Whitesides, "Soft lithography," Angew. Chem., Int. Ed. Engl. 37, 551-575 (1998).
[CrossRef]

Appl. Phys. Lett.

W. Zhou, Y. Huang, E. Menard, N. R. Aluru, J. A. Rogers, and A. G. Alleyne, "Mechanism for stamp collapse in soft lithography," Appl. Phys. Lett. 87, 251925 (2005).
[CrossRef]

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, "Collapse of stamps for soft lithography due to interfacial adhesion," Appl. Phys. Lett. 86, 154106 (2005).
[CrossRef]

S. Jeon, Y. Nam, D. Shir, J. Rogers, and A. Hamza, "three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks’," Appl. Phys. Lett. 89, 253101 (2006).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: Embossed photoresist as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Chem. Rev.

J. W. Long, B. Dunn, D. R. Rolison, and H. S. White, "Three-Dimensional Battery Architectures," Chem. Rev. 104, 4463-4492 (2004).
[CrossRef]

J. Am. Chem. Soc.

B. Kaehr and J. B. Shear, "Mask-directed multiphoton lithography," J. Am. Chem. Soc. 129, 1904-1905 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

H. Tan, A. Gilbertson, and S. Y. Chou, "Roller nanoimprint lithography," J. Vac. Sci. Technol. B 16, 3926-3928 (1998).
[CrossRef]

K. E. Paul, T. L. Breen, T. Hadzik, G. M. Whitesides, S. P. Smith, and M. Prentiss, "Imaging patterns of intensity in topographically directed photolithography," J. Vac. Sci. Technol. B 23, 918-925 (2005).
[CrossRef]

Nano. Lett.

F. Hua, Y. G. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotkina, J. F. Wang, P. Geil, M. Shim, J. A. Rogers, and A. Shim, "Polymer imprint lithography with molecular-scale resolution," Nano. Lett. 4, 2467-2471 (2004).
[CrossRef]

D. B. Shao and S. C. Chen, "Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography," Nano. Lett. 6, 2279-2283 (2006).
[CrossRef] [PubMed]

S. Jeon, V. Malyarchuk, J. O. White, and J. A. Rogers, "Optically fabricated three dimensional nanofluidic mixers for microfluidic devices," Nano. Lett. 5, 1351-1356 (2005).
[CrossRef] [PubMed]

Nature

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature 398, 51-54 (1999).
[CrossRef]

D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, "Discretizing light behavior in linear and nonlinear waveguide lattices," Nature 424, 817-823 (2003).
[CrossRef] [PubMed]

J. H. Holtz and S. A. Asher, "Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials," Nature 389, 829-832 (1997).
[CrossRef]

Opt. Express

Proc. Natl. Acad. Sci.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Natl. Acad. Sci. 101, 12428-12433 (2004).
[CrossRef] [PubMed]

Science

B. T. Holland, C. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids," Science 281, 538-540 (1998).
[CrossRef] [PubMed]

P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, "Microfabrication inside capillaries using multiphase laminar flow patterning," Science 285, 83-85 (1999).
[CrossRef] [PubMed]

Other

"The GSOLVER ver. 4.20 developed by Grating Solver Development Company (P.O. Box 353, Allen, TX 75013)."

S. Uemura, "The activities of FGM on new application," Mater. Sci. Forum 423-425 (Functionally Graded Materials VII), 1-10 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the formation of relief structures on the surface of a photosensitive transparent polymer (SU-8) (a, b) for a maskless, phase optic approach to formation of 3D nanostructures. Scanning electron micrographs of the molded structures (c, d). These relief patterns consist of square arrays of cylindrical holes (depth: 420 nm) with diameters of 570 nm (c, mask 1) and 375 nm (d, mask 2) and periodicities of 710 nm and 566 nm, respectively. Highly uniform structures of this type can be formed over large areas (5 × 5 mm for the examples shown here).

Fig. 2.
Fig. 2.

Schematic illustration (a) of optical exposure through the molded surface of a transparent layer of a photopolymer (SU-8). Cross-sectional (b, e) and top view (c, d) scanning electron micrographs of 3D nanostructures by developing away unexposed regions of the polymer. Mask 1 and 2 were used for (b, c) and (d, e), respectively.

Fig. 3.
Fig. 3.

Scanning electron micrographs of 3D nanostructures formed by 2 photon patterning by exposure through a layer of the photopolymer SU-8 molded with Mask 2. Scanning electron micrograph of cross-sectional (a) and angled (b) views. Intensity distributions computed along the 6 (001) plane, top view (c), the (110) plane, side view (d), 3D rendering after applying cutoff filter (e), and reflection spectrum from experimental and modeling results (f).

Fig. 4.
Fig. 4.

Schematic illustration of 3D structures formed by first molding coarse (~10 μm widths and depths) features into a layer of a transparent photopolymer (SU-8) (a,b) and then exposing the structure by passing light through a phase mask while it is in conformal contact with the molded SU-8 (c,d). The scanning electron micrographs show the molded features (e) and the resulting 3D structures (f). The mold for (c) had 10 μm line and space features with relief depth of 10 μm. Mask 2 was used for steps (c,d).

Fig. 5.
Fig. 5.

Schematic illustration of molding mask 3 on SU-8 surface (a) and initiating conformal contact of the same mask on the molded surface (b). SEMs of patterned 3D structures from the system shows top image (c) and bird’s eye view (d). Image of modeling from (001) plane, top view (c), from (110) plane, side view (d), and 3D rendering after applying cut-off filter (e). All structures and modeling are from molded SU-8 film by Mask 3.

Metrics