Abstract

We have investigated wavelength dispersion of photo-induced nonlinear dielectric function of Au nanoparticle materials. Transient transmission and reflection spectra were sequentially measured by the pump-probe method with a femtosecond laser system. The dispersion of real and imaginary parts of the nonlinear dielectric function of Au:SiO2 nanoparticle material in the vicinity of the surface plasmon resonance was evaluated from these transient spectra with total differential. A local electromagnetic field factor and interband transition in Au nanoparticles directly dominate the dispersion.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
    [CrossRef]
  2. E. Hutter, J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16,1685-1706 (2004).
    [CrossRef]
  3. E. Ozbay, "Plasmonics: Merging Photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
    [CrossRef] [PubMed]
  4. E. Hao, G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120,357-366 (2004).
    [CrossRef] [PubMed]
  5. A. Ishikawa, T. Tanaka, S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95,237401 (2005).
    [CrossRef] [PubMed]
  6. K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33,2461-2464 (1986).
    [CrossRef] [PubMed]
  7. T. Pan, Z. Y. Li, "Optical bistability of metallic particle composites," Phys. Stat. Sol.(b) 213,203-210 (1999).
    [CrossRef]
  8. Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, "Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites," J. Lumin. 87-89,859-861 (2000).
    [CrossRef]
  9. C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
    [CrossRef]
  10. J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251,181-203 (2000).
    [CrossRef]
  11. N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
    [CrossRef]
  12. N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
    [CrossRef]
  13. Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Copper Nanoparticle Composites in Insulators by Negative Ion Implantation for Optical Application," Materials Transaction 43,1057-1060 (2002).
    [CrossRef]
  14. Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Picosecond dynamics of Cu nanoparticle composites embedded in insulators by 60 keV negative ion implantation," Proc. SPIE 4628,46-53 (2002).
    [CrossRef]
  15. Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
    [CrossRef]
  16. N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, E. Iwamoto, "High-Current Heavy-Ion Accelerator System and its Application to Material Modification," Jpn. J. Appl. Phys. 40,1087-1090 (2001).
    [CrossRef]
  17. Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
    [CrossRef]
  18. Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
    [CrossRef]
  19. R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5,3883-3894 (1972).
    [CrossRef]
  20. C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
    [CrossRef]
  21. Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
    [CrossRef]
  22. R. Rosei, F. Antonangeli, U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Sci. 37,689-699 (1973).
    [CrossRef]
  23. L. B. Scaffardi and J. O. Tocho, "Size dependence of refractive index of gold nanoparticles," Nanotechnology 17,1309-1315 (2006).
    [CrossRef]
  24. H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57,11334-11340 (1998).
    [CrossRef]
  25. W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
    [CrossRef]
  26. F. Iacona, R. Kelly, G. Marletta, "X-ray photoelectron spectroscopy study of bombardment-induced compositional changes in ZrO2, SiO2, and ZrSiO4," J. Vac. Sci. Technol. A 17,2771-2778 (1999).
    [CrossRef]
  27. C. Fiori and R. A. B. Devine, "Photon-Induced Oxygen Loss in Thin SiO2 Films," Phys. Rev. Lett. 52,2081-2083 (1984).
    [CrossRef]
  28. S. H. Wemple, "Refractive-Index Behavior of Amorphous Semiconductors and Glasses," Phys. Rev. B 7,3767-3777 (1973).
    [CrossRef]
  29. F. Hache, D. Ricard, C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3,1647-1655 (1986).
    [CrossRef]
  30. F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
    [CrossRef]

2006

E. Ozbay, "Plasmonics: Merging Photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
[CrossRef] [PubMed]

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
[CrossRef]

L. B. Scaffardi and J. O. Tocho, "Size dependence of refractive index of gold nanoparticles," Nanotechnology 17,1309-1315 (2006).
[CrossRef]

2005

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

A. Ishikawa, T. Tanaka, S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95,237401 (2005).
[CrossRef] [PubMed]

2004

E. Hao, G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120,357-366 (2004).
[CrossRef] [PubMed]

E. Hutter, J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16,1685-1706 (2004).
[CrossRef]

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

2002

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Copper Nanoparticle Composites in Insulators by Negative Ion Implantation for Optical Application," Materials Transaction 43,1057-1060 (2002).
[CrossRef]

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Picosecond dynamics of Cu nanoparticle composites embedded in insulators by 60 keV negative ion implantation," Proc. SPIE 4628,46-53 (2002).
[CrossRef]

2001

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, E. Iwamoto, "High-Current Heavy-Ion Accelerator System and its Application to Material Modification," Jpn. J. Appl. Phys. 40,1087-1090 (2001).
[CrossRef]

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

2000

Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, "Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites," J. Lumin. 87-89,859-861 (2000).
[CrossRef]

J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251,181-203 (2000).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

1999

F. Iacona, R. Kelly, G. Marletta, "X-ray photoelectron spectroscopy study of bombardment-induced compositional changes in ZrO2, SiO2, and ZrSiO4," J. Vac. Sci. Technol. A 17,2771-2778 (1999).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
[CrossRef]

T. Pan, Z. Y. Li, "Optical bistability of metallic particle composites," Phys. Stat. Sol.(b) 213,203-210 (1999).
[CrossRef]

1998

H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57,11334-11340 (1998).
[CrossRef]

1994

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
[CrossRef]

1988

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

1986

F. Hache, D. Ricard, C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3,1647-1655 (1986).
[CrossRef]

K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33,2461-2464 (1986).
[CrossRef] [PubMed]

1984

C. Fiori and R. A. B. Devine, "Photon-Induced Oxygen Loss in Thin SiO2 Films," Phys. Rev. Lett. 52,2081-2083 (1984).
[CrossRef]

1973

S. H. Wemple, "Refractive-Index Behavior of Amorphous Semiconductors and Glasses," Phys. Rev. B 7,3767-3777 (1973).
[CrossRef]

R. Rosei, F. Antonangeli, U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Sci. 37,689-699 (1973).
[CrossRef]

1972

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5,3883-3894 (1972).
[CrossRef]

Acioli, L. H.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
[CrossRef]

Antonangeli, F.

R. Rosei, F. Antonangeli, U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Sci. 37,689-699 (1973).
[CrossRef]

Arnoldbik, W. M.

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Bandourko, V. V.

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Copper Nanoparticle Composites in Insulators by Negative Ion Implantation for Optical Application," Materials Transaction 43,1057-1060 (2002).
[CrossRef]

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Picosecond dynamics of Cu nanoparticle composites embedded in insulators by 60 keV negative ion implantation," Proc. SPIE 4628,46-53 (2002).
[CrossRef]

Bigot, J. -Y.

J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251,181-203 (2000).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Broyer, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Christofilos, D.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Cottancin, E.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Daunois, A.

J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251,181-203 (2000).
[CrossRef]

Devine, R. A. B.

C. Fiori and R. A. B. Devine, "Photon-Induced Oxygen Loss in Thin SiO2 Films," Phys. Rev. Lett. 52,2081-2083 (1984).
[CrossRef]

Fatti, N. D.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Fendler, J. H.

E. Hutter, J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16,1685-1706 (2004).
[CrossRef]

Fiori, C.

C. Fiori and R. A. B. Devine, "Photon-Induced Oxygen Loss in Thin SiO2 Films," Phys. Rev. Lett. 52,2081-2083 (1984).
[CrossRef]

Flytzanis, C.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3,1647-1655 (1986).
[CrossRef]

Fujimoto, J. G.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
[CrossRef]

Gaudry, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Grassano, U. M.

R. Rosei, F. Antonangeli, U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Sci. 37,689-699 (1973).
[CrossRef]

Gritsyna, V. T.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
[CrossRef]

Habraken, F. H. P. M.

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3,1647-1655 (1986).
[CrossRef]

Halté, V.

J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251,181-203 (2000).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, "Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites," J. Lumin. 87-89,859-861 (2000).
[CrossRef]

Hao, E.

E. Hao, G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120,357-366 (2004).
[CrossRef] [PubMed]

Hayashi, N.

Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, "Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites," J. Lumin. 87-89,859-861 (2000).
[CrossRef]

Hirao, K.

H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57,11334-11340 (1998).
[CrossRef]

Hutter, E.

E. Hutter, J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16,1685-1706 (2004).
[CrossRef]

Iacona, F.

F. Iacona, R. Kelly, G. Marletta, "X-ray photoelectron spectroscopy study of bombardment-induced compositional changes in ZrO2, SiO2, and ZrSiO4," J. Vac. Sci. Technol. A 17,2771-2778 (1999).
[CrossRef]

Inouye, H.

H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57,11334-11340 (1998).
[CrossRef]

Ippen, E. P.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
[CrossRef]

Ishikawa, A.

A. Ishikawa, T. Tanaka, S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95,237401 (2005).
[CrossRef] [PubMed]

Kawata, S.

A. Ishikawa, T. Tanaka, S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95,237401 (2005).
[CrossRef] [PubMed]

Kelly, R.

F. Iacona, R. Kelly, G. Marletta, "X-ray photoelectron spectroscopy study of bombardment-induced compositional changes in ZrO2, SiO2, and ZrSiO4," J. Vac. Sci. Technol. A 17,2771-2778 (1999).
[CrossRef]

Kik, P G.

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Kishimoto, K.

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
[CrossRef]

Kishimoto, N.

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Picosecond dynamics of Cu nanoparticle composites embedded in insulators by 60 keV negative ion implantation," Proc. SPIE 4628,46-53 (2002).
[CrossRef]

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Copper Nanoparticle Composites in Insulators by Negative Ion Implantation for Optical Application," Materials Transaction 43,1057-1060 (2002).
[CrossRef]

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, E. Iwamoto, "High-Current Heavy-Ion Accelerator System and its Application to Material Modification," Jpn. J. Appl. Phys. 40,1087-1090 (2001).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
[CrossRef]

Kono, K.

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

Lee, C. G.

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Picosecond dynamics of Cu nanoparticle composites embedded in insulators by 60 keV negative ion implantation," Proc. SPIE 4628,46-53 (2002).
[CrossRef]

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Copper Nanoparticle Composites in Insulators by Negative Ion Implantation for Optical Application," Materials Transaction 43,1057-1060 (2002).
[CrossRef]

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, E. Iwamoto, "High-Current Heavy-Ion Accelerator System and its Application to Material Modification," Jpn. J. Appl. Phys. 40,1087-1090 (2001).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
[CrossRef]

Lermé, J.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Leung, K. M.

K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33,2461-2464 (1986).
[CrossRef] [PubMed]

Li, Z. Y.

T. Pan, Z. Y. Li, "Optical bistability of metallic particle composites," Phys. Stat. Sol.(b) 213,203-210 (1999).
[CrossRef]

Lof, R. W.

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

Loukakos, P. A.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Lu, J.

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
[CrossRef]

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

Lynch, D. W.

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5,3883-3894 (1972).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Marletta, G.

F. Iacona, R. Kelly, G. Marletta, "X-ray photoelectron spectroscopy study of bombardment-induced compositional changes in ZrO2, SiO2, and ZrSiO4," J. Vac. Sci. Technol. A 17,2771-2778 (1999).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Merle, J. -C.

J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251,181-203 (2000).
[CrossRef]

Nakamura, A.

Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, "Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites," J. Lumin. 87-89,859-861 (2000).
[CrossRef]

Okubo, N.

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

Omi, S.

Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, "Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites," J. Lumin. 87-89,859-861 (2000).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: Merging Photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
[CrossRef] [PubMed]

Pan, T.

T. Pan, Z. Y. Li, "Optical bistability of metallic particle composites," Phys. Stat. Sol.(b) 213,203-210 (1999).
[CrossRef]

Pellarin, M.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Plaksin, O. A.

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
[CrossRef]

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

Renk, T. J.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

Ricard, D.

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

F. Hache, D. Ricard, C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3,1647-1655 (1986).
[CrossRef]

Rosei, R.

R. Rosei, F. Antonangeli, U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Sci. 37,689-699 (1973).
[CrossRef]

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5,3883-3894 (1972).
[CrossRef]

Scaffardi, L. B.

L. B. Scaffardi and J. O. Tocho, "Size dependence of refractive index of gold nanoparticles," Nanotechnology 17,1309-1315 (2006).
[CrossRef]

Schatz, G. C.

E. Hao, G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120,357-366 (2004).
[CrossRef] [PubMed]

Suga, T.

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

Sun, C. -K.

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
[CrossRef]

Takeda, Y.

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
[CrossRef]

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Copper Nanoparticle Composites in Insulators by Negative Ion Implantation for Optical Application," Materials Transaction 43,1057-1060 (2002).
[CrossRef]

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Picosecond dynamics of Cu nanoparticle composites embedded in insulators by 60 keV negative ion implantation," Proc. SPIE 4628,46-53 (2002).
[CrossRef]

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, E. Iwamoto, "High-Current Heavy-Ion Accelerator System and its Application to Material Modification," Jpn. J. Appl. Phys. 40,1087-1090 (2001).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
[CrossRef]

Tanahashi, I.

H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57,11334-11340 (1998).
[CrossRef]

Tanaka, K.

H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57,11334-11340 (1998).
[CrossRef]

Tanaka, T.

A. Ishikawa, T. Tanaka, S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95,237401 (2005).
[CrossRef] [PubMed]

Thompson, M. O.

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

Tocho, J. O.

L. B. Scaffardi and J. O. Tocho, "Size dependence of refractive index of gold nanoparticles," Nanotechnology 17,1309-1315 (2006).
[CrossRef]

Tomozeiu, N.

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

Umeda, N.

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
[CrossRef]

Vallée, F.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
[CrossRef]

van Hattum, E. D.

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

Voisin, C.

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

Vredenberg, A. M.

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

Wang, H.

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

Wemple, S. H.

S. H. Wemple, "Refractive-Index Behavior of Amorphous Semiconductors and Glasses," Phys. Rev. B 7,3767-3777 (1973).
[CrossRef]

Adv. Mater.

S. A. Maier, M. L. Brongersma, P G. Kik, S. Meltzer, A. A. G. Requicha, H. A. Atwater, "Plasmonics-A route to nanoscale optical devices," Adv. Mater. 13,1501-1505 (2001).
[CrossRef]

E. Hutter, J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16,1685-1706 (2004).
[CrossRef]

Appl. Phys. A

F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47,347-357 (1988).
[CrossRef]

Chem. Phys.

J. -Y. Bigot, V. Halté, J. -C. Merle, A. Daunois, "Electron dynamics in metallic nanoparticles," Chem. Phys. 251,181-203 (2000).
[CrossRef]

J. Chem. Phys.

E. Hao, G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimers," J. Chem. Phys. 120,357-366 (2004).
[CrossRef] [PubMed]

J. Lumin.

Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, "Dispersion of third-order nonlinear optical susceptibility of silver nanocrystal-glass composites," J. Lumin. 87-89,859-861 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. A

F. Iacona, R. Kelly, G. Marletta, "X-ray photoelectron spectroscopy study of bombardment-induced compositional changes in ZrO2, SiO2, and ZrSiO4," J. Vac. Sci. Technol. A 17,2771-2778 (1999).
[CrossRef]

Jpn. J. Appl. Phys.

N. Kishimoto, Y. Takeda, C. G. Lee. N. Umeda, N. Okubo, E. Iwamoto, "High-Current Heavy-Ion Accelerator System and its Application to Material Modification," Jpn. J. Appl. Phys. 40,1087-1090 (2001).
[CrossRef]

Materials Transaction

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Copper Nanoparticle Composites in Insulators by Negative Ion Implantation for Optical Application," Materials Transaction 43,1057-1060 (2002).
[CrossRef]

Nanotechnology

L. B. Scaffardi and J. O. Tocho, "Size dependence of refractive index of gold nanoparticles," Nanotechnology 17,1309-1315 (2006).
[CrossRef]

Nucl. Instrum. Methods B

Y. Takeda, O. A. Plaksin, J. Lu, K. Kono, K. Kishimoto, "Optical nonlinearity of Cu:SrTiO3 composite fabricated by negative ion implantation," Nucl. Instrum. Methods B 250,372-376 (2006).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, C. G. Lee, V. T. Gritsyna, "Self-Assembled Two-Dimensional Distribution of Nanoparticles with High-Current Cu- Implantation into Insulator," Nucl. Instrum. Methods B 148,1017-1022 (1999).
[CrossRef]

Y. Takeda, V. T. Gritsyna, N. Umeda, C. G. Lee, N. Kishimoto, "Linear and Nonlinear Optical Properties of Cu Nanoparticles Fabricated by High-Current Cu- Implantation in Silica Glass," Nucl. Instrum. Methods B 148,1029-1033 (1999).
[CrossRef]

Opt. Rev.

Y. Takeda, O. A. Plaksin, H. Wang, K. Kono, N. Umeda, N. Kishimoto, "Surface plasmon resonance of Au nanoparticles fabricated by negative ion implantation and grid structure toward plasmonic applications," Opt. Rev. 13,231-234 (2006).
[CrossRef]

Phys. Rev. A

K. M. Leung, "Optical bistability in the scattering and absorption of light from nonlinear microparticles," Phys. Rev. A 33,2461-2464 (1986).
[CrossRef] [PubMed]

Phys. Rev. B

C. Voisin, D. Christofilos, P. A. Loukakos, N. D. Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, "Ultrafast electron scattering and energy exchanges in noble-metal nanoparticles," Phys. Rev. B 69,195416 (2004).
[CrossRef]

R. Rosei and D. W. Lynch, "Thermomodulation spectra of Al, Au, and Cu," Phys. Rev. B 5,3883-3894 (1972).
[CrossRef]

C. -K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, J. G. Fujimoto, "Femtosecond-tunable measurement of electron thermalization in gold," Phys. Rev. B 50,15337-15348 (1994).
[CrossRef]

H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao, "Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system," Phys. Rev. B 57,11334-11340 (1998).
[CrossRef]

W. M. Arnoldbik, N. Tomozeiu, E. D. van Hattum, R. W. Lof, A. M. Vredenberg, F. H. P. M. Habraken, "High-energy ion-beam-induced phase separation in SiOx films," Phys. Rev. B 71,125329 (2005).
[CrossRef]

S. H. Wemple, "Refractive-Index Behavior of Amorphous Semiconductors and Glasses," Phys. Rev. B 7,3767-3777 (1973).
[CrossRef]

Phys. Rev. Lett.

C. Fiori and R. A. B. Devine, "Photon-Induced Oxygen Loss in Thin SiO2 Films," Phys. Rev. Lett. 52,2081-2083 (1984).
[CrossRef]

A. Ishikawa, T. Tanaka, S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett. 95,237401 (2005).
[CrossRef] [PubMed]

Phys. Stat. Sol.

T. Pan, Z. Y. Li, "Optical bistability of metallic particle composites," Phys. Stat. Sol.(b) 213,203-210 (1999).
[CrossRef]

Proc. SPIE

Y. Takeda, C. G. Lee, V. V. Bandourko, N. Kishimoto, "Picosecond dynamics of Cu nanoparticle composites embedded in insulators by 60 keV negative ion implantation," Proc. SPIE 4628,46-53 (2002).
[CrossRef]

Science

E. Ozbay, "Plasmonics: Merging Photonics and electronics at nanoscale dimensions," Science 311,189-193 (2006).
[CrossRef] [PubMed]

Surf. Sci.

R. Rosei, F. Antonangeli, U. M. Grassano, "d bands position and width in gold from very low temperature thermomodulation measurements," Surf. Sci. 37,689-699 (1973).
[CrossRef]

Vacuum

Y. Takeda, J. Lu, N. Okubo, O. A. Plaksin, T. Suga, N. Kishimoto, "Optical properties of metal nanoparticles synthesized in insulators by negative ion implantation," Vacuum 74,717-721 (2004).
[CrossRef]

N. Kishimoto, N. Umeda, Y. Takeda, V. T. Gritsyna, T. J. Renk, M. O. Thompson, "In-Beam Growth and Rearrangement of Nanoparticles in Insulators Induced by High-Current Negative Copper Ions," Vacuum 58,60-78 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A cross sectional TEM image of Au nanoparticle composite and the layer structure for optical analysis.

Fig. 2.
Fig. 2.

(a) Steady-state reflection and transmission spectra and (b) the effective refractive index of Au implanted layer in silica glass.

Fig. 3.
Fig. 3.

(a) Transient reflection and transmission spectra and (b) the partial differential terms of Au implanted layer in silica glass.

Fig. 4.
Fig. 4.

Evaluated dispersion of the nonlinear dielectric function of Au nanoparticle materials.

Fig. 5.
Fig. 5.

(a) Calculated dispersion of and (b) the measured dispersion of the dielectric function of Au nanoparticle materials.

Fig. 6.
Fig. 6.

Numerical calculations of the nonlinear dielectric function of Au nanoparticle materials.

Fig. 7.
Fig. 7.

Numerical calculation of the fl 2fl 2 spectrum of Au nanoparticle materials.

Fig. 8.
Fig. 8.

Calculated dispersion of the nonlinear dielectric function of Au nanoparticles.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δ R R = 1 R R n Δ n + 1 R R k Δ k
Δ T T = 1 T T n Δ n + 1 T T k Δ k ,
Δ ε ' = 2 ( n Δ n k Δ k ) , Δ ε = 2 ( n Δ k + k Δ n ) ,
R = rr * = r 2 e 2 + r 1 e 2 e 2 + r 1 r 2 e 2 2
T = tt * = N 3 N 1 t 1 t 2 e 2 + r 1 r 2 e 2 2
δ 2 = 2 π λ N 2 d 2 , t j = 2 N j N j + N j + 1 , r j = N j N j + 1 N j + N j + 1 , ( j = 1,2,3 ) ,
N = n + ik
ε m ( ω ) = ε free ( ω ) + ε bound ( ω ) .
ε free ( ω ) = 1 ( ħ ω p ) 2 ħω ( ħω + ω τ ) ,
ħω τ = ħ ω τ 0 + v F R
ε bound ( ω ) = Q ω g dx x ω g x [ 1 F x θ e ] ( x 2 ω 2 + γ ee 2 + 2 i ω γ ee ) ( x 2 ω 2 + γ ee 2 ) 2 + 4 ω 2 γ ee 2 ,
F x θ e = 1 exp { ( ħx ζ ) k B θ e } + 1
ε MG = ε d 1 + 2 p ( ε m ε d ) ( ε m + 2 ε d ) 1 p ( ε m ε d ) ( ε m + 2 ε d ) ,
Δ ε = 3 π χ eff ( 3 ) I
χ eff ( 3 ) = p f l 2 f l 2 χ m ( 3 ) ,
f l = ε d ( ω ) L ε m ( ω ) + ( 1 L ) ε d ( ω ) ,

Metrics