Abstract

Tungsten nanogratings with sub-100nm linewidths and subwavelength periods are fabricated by laser-induced chemical vapor deposition using a single 400 nm femtosecond pulsed laser beam without any beam shaping. Combining advantages of parallel and direct-write processing, this method can produce various nanograting structures on a wide range of substrates in a single step.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Baüerle, Laser Processing and Chemistry (Springer, Berlin; New York, 2000).
  2. M. Geissler and Y. N. Xia, "Patterning: Principles and some new developments," Adv. Mater. 16, 1249-1269 (2004).
    [CrossRef]
  3. A. Pique and D. B. Chrisey, Direct-Write Technologies for Rapid Prototyping: Applications to Sensors, Electronics, and Passivation Coatings (Academic Press, 2001).
    [PubMed]
  4. P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
    [CrossRef]
  5. J. Ehrlich, R. M. Osgood, and T. F. Deutsch, "Spatially delineated growth of metal-films via photochemical pre-nucleation," Appl. Phys. Lett. 38, 946-948 (1981).
    [CrossRef]
  6. J. Ehrlich and J. Y. Tsao, "Nonreciprocal laser-microchemical processing - spatial-resolution limits and demonstration of 0.2-μm linewidths," Appl. Phys. Lett. 44, 267-269 (1984).
    [CrossRef]
  7. R. Haight, P. Longo, and A. Wagner, "Metal deposition with femtosecond light pulses at atmospheric pressure," J. Vac. Sci. Technol. A 21, 649-652 (2003).
    [CrossRef]
  8. .H. Tsing-Hua, Z. Haitao, and T. Mingzhen, US patent pending.
  9. Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982).
    [CrossRef]
  10. K. A. Singmaster, F. A. Houle, and R. J. Wilson, "Photochemical deposition of thin-films from the metal hexacarbonyls," J. Phys. Chem. 94, 6864-6875 (1990).
    [CrossRef]
  11. H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface-structure on solids - a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
    [CrossRef]
  12. S. R. J. Brueck and D. J. Ehrlich, "Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser-photodeposited metal-films," Phys. Rev. Lett. 48, 1678-1681 (1982).
    [CrossRef]
  13. R. M. Osgood and D. J. Ehrlich, "Optically induced microstructures in laser-photodeposited metal-films," Opt. Lett. 7, 385-387 (1982).
    [CrossRef] [PubMed]
  14. R. J. Wilson and F. A. Houle, "Composition, structure, and electric-field variations in photodeposition," Phys. Rev. Lett. 55, 2184-2187 (1985).
    [CrossRef] [PubMed]
  15. B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
    [CrossRef]
  16. D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B-Opt.Phys. 13, 216-222 (1996).
    [CrossRef]
  17. J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
    [CrossRef]
  18. A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
    [CrossRef]
  19. J. A. Misewich, T. F. Heinz, and D. M. Newns, "Desorption induced by multiple electronic-transitions," Phys. Rev. Lett. 68, 3737-3740 (1992).
    [CrossRef] [PubMed]
  20. C. P. A. Mulcahy, J. Eggeling, and T. S. Jones, "Low-energy electron beam induced dissociation of methyl groups chemisorbed on semiconductor surfaces: (CH3)3Al adsorbed on GaAs and InSb," Chem. Phys. Lett. 288, 203-208 (1998).
    [CrossRef]
  21. D. G. Busch and W. Ho, "Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry," Phys. Rev. Lett. 77, 1338-1341 (1996).
    [CrossRef] [PubMed]
  22. K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
    [CrossRef]
  23. N. Silvis-Cividjian, Electron Beam Induced Nanometer Scale Deposition (DUP Science, Netherlands, 2002).
  24. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
    [CrossRef] [PubMed]
  25. K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
    [CrossRef]
  26. O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, "Coupling gratings as waveguide functional elements," Pure Appl. Opt: J. European Opt. Soc. Part A 5, 453 (1996).
    [CrossRef]
  27. M. Y. Su and R. P. Mirin, "Enhanced light extraction from circular Bragg grating coupled microcavities," Appl. Phys. Lett. 89033105 (2006).
    [CrossRef]
  28. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]

2007 (1)

P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
[CrossRef]

2006 (2)

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

M. Y. Su and R. P. Mirin, "Enhanced light extraction from circular Bragg grating coupled microcavities," Appl. Phys. Lett. 89033105 (2006).
[CrossRef]

2004 (2)

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

M. Geissler and Y. N. Xia, "Patterning: Principles and some new developments," Adv. Mater. 16, 1249-1269 (2004).
[CrossRef]

2003 (2)

R. Haight, P. Longo, and A. Wagner, "Metal deposition with femtosecond light pulses at atmospheric pressure," J. Vac. Sci. Technol. A 21, 649-652 (2003).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

1999 (1)

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
[CrossRef] [PubMed]

1998 (1)

C. P. A. Mulcahy, J. Eggeling, and T. S. Jones, "Low-energy electron beam induced dissociation of methyl groups chemisorbed on semiconductor surfaces: (CH3)3Al adsorbed on GaAs and InSb," Chem. Phys. Lett. 288, 203-208 (1998).
[CrossRef]

1996 (4)

D. G. Busch and W. Ho, "Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry," Phys. Rev. Lett. 77, 1338-1341 (1996).
[CrossRef] [PubMed]

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, "Coupling gratings as waveguide functional elements," Pure Appl. Opt: J. European Opt. Soc. Part A 5, 453 (1996).
[CrossRef]

D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B-Opt.Phys. 13, 216-222 (1996).
[CrossRef]

A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
[CrossRef]

1992 (1)

J. A. Misewich, T. F. Heinz, and D. M. Newns, "Desorption induced by multiple electronic-transitions," Phys. Rev. Lett. 68, 3737-3740 (1992).
[CrossRef] [PubMed]

1990 (2)

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

K. A. Singmaster, F. A. Houle, and R. J. Wilson, "Photochemical deposition of thin-films from the metal hexacarbonyls," J. Phys. Chem. 94, 6864-6875 (1990).
[CrossRef]

1985 (1)

R. J. Wilson and F. A. Houle, "Composition, structure, and electric-field variations in photodeposition," Phys. Rev. Lett. 55, 2184-2187 (1985).
[CrossRef] [PubMed]

1984 (2)

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

J. Ehrlich and J. Y. Tsao, "Nonreciprocal laser-microchemical processing - spatial-resolution limits and demonstration of 0.2-μm linewidths," Appl. Phys. Lett. 44, 267-269 (1984).
[CrossRef]

1982 (4)

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface-structure on solids - a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

S. R. J. Brueck and D. J. Ehrlich, "Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser-photodeposited metal-films," Phys. Rev. Lett. 48, 1678-1681 (1982).
[CrossRef]

R. M. Osgood and D. J. Ehrlich, "Optically induced microstructures in laser-photodeposited metal-films," Opt. Lett. 7, 385-387 (1982).
[CrossRef] [PubMed]

Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982).
[CrossRef]

1981 (1)

J. Ehrlich, R. M. Osgood, and T. F. Deutsch, "Spatially delineated growth of metal-films via photochemical pre-nucleation," Appl. Phys. Lett. 38, 946-948 (1981).
[CrossRef]

Bandukwalla, G.

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

Bloembergen, N.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

Brueck, S. R. J.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

S. R. J. Brueck and D. J. Ehrlich, "Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser-photodeposited metal-films," Phys. Rev. Lett. 48, 1678-1681 (1982).
[CrossRef]

Busch, D. G.

D. G. Busch and W. Ho, "Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry," Phys. Rev. Lett. 77, 1338-1341 (1996).
[CrossRef] [PubMed]

Chen, S. H.

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

Chimmalgi, A.

P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
[CrossRef]

Conley, W.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Damascelli, A.

A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
[CrossRef]

Dammel, R.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

Deutsch, T. F.

J. Ehrlich, R. M. Osgood, and T. F. Deutsch, "Spatially delineated growth of metal-films via photochemical pre-nucleation," Appl. Phys. Lett. 38, 946-948 (1981).
[CrossRef]

Eggeling, J.

C. P. A. Mulcahy, J. Eggeling, and T. S. Jones, "Low-energy electron beam induced dissociation of methyl groups chemisorbed on semiconductor surfaces: (CH3)3Al adsorbed on GaAs and InSb," Chem. Phys. Lett. 288, 203-208 (1998).
[CrossRef]

Ehrlich, D. J.

S. R. J. Brueck and D. J. Ehrlich, "Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser-photodeposited metal-films," Phys. Rev. Lett. 48, 1678-1681 (1982).
[CrossRef]

R. M. Osgood and D. J. Ehrlich, "Optically induced microstructures in laser-photodeposited metal-films," Opt. Lett. 7, 385-387 (1982).
[CrossRef] [PubMed]

Ehrlich, J.

J. Ehrlich and J. Y. Tsao, "Nonreciprocal laser-microchemical processing - spatial-resolution limits and demonstration of 0.2-μm linewidths," Appl. Phys. Lett. 44, 267-269 (1984).
[CrossRef]

J. Ehrlich, R. M. Osgood, and T. F. Deutsch, "Spatially delineated growth of metal-films via photochemical pre-nucleation," Appl. Phys. Lett. 38, 946-948 (1981).
[CrossRef]

Fini, L.

A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
[CrossRef]

Fragala, J.

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

Frauenglass, A.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

Fujimoto, J. G.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

Gabetta, G.

A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
[CrossRef]

Geissler, M.

M. Geissler and Y. N. Xia, "Patterning: Principles and some new developments," Adv. Mater. 16, 1249-1269 (2004).
[CrossRef]

Gilgen, H. H.

Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982).
[CrossRef]

Grigoropoulos, P.

P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
[CrossRef]

Haight, R.

R. Haight, P. Longo, and A. Wagner, "Metal deposition with femtosecond light pulses at atmospheric pressure," J. Vac. Sci. Technol. A 21, 649-652 (2003).
[CrossRef]

Heinz, T. F.

J. A. Misewich, T. F. Heinz, and D. M. Newns, "Desorption induced by multiple electronic-transitions," Phys. Rev. Lett. 68, 3737-3740 (1992).
[CrossRef] [PubMed]

Hinsberg, W.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

Ho, W.

D. G. Busch and W. Ho, "Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry," Phys. Rev. Lett. 77, 1338-1341 (1996).
[CrossRef] [PubMed]

Hong, S. H.

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
[CrossRef] [PubMed]

Hou, H. Q.

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

Houle, F. A.

K. A. Singmaster, F. A. Houle, and R. J. Wilson, "Photochemical deposition of thin-films from the metal hexacarbonyls," J. Phys. Chem. 94, 6864-6875 (1990).
[CrossRef]

R. J. Wilson and F. A. Houle, "Composition, structure, and electric-field variations in photodeposition," Phys. Rev. Lett. 55, 2184-2187 (1985).
[CrossRef] [PubMed]

Hwang, D. J.

P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
[CrossRef]

Ippen, E. P.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

Jones, T. S.

C. P. A. Mulcahy, J. Eggeling, and T. S. Jones, "Low-energy electron beam induced dissociation of methyl groups chemisorbed on semiconductor surfaces: (CH3)3Al adsorbed on GaAs and InSb," Chem. Phys. Lett. 288, 203-208 (1998).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Liu, C.

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

Liu, J. M.

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

Longo, P.

R. Haight, P. Longo, and A. Wagner, "Metal deposition with femtosecond light pulses at atmospheric pressure," J. Vac. Sci. Technol. A 21, 649-652 (2003).
[CrossRef]

Lumachi, A.

A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
[CrossRef]

Mirin, R. P.

M. Y. Su and R. P. Mirin, "Enhanced light extraction from circular Bragg grating coupled microcavities," Appl. Phys. Lett. 89033105 (2006).
[CrossRef]

Mirkin, C. A.

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
[CrossRef] [PubMed]

Misewich, J. A.

J. A. Misewich, T. F. Heinz, and D. M. Newns, "Desorption induced by multiple electronic-transitions," Phys. Rev. Lett. 68, 3737-3740 (1992).
[CrossRef] [PubMed]

Mulcahy, C. P. A.

C. P. A. Mulcahy, J. Eggeling, and T. S. Jones, "Low-energy electron beam induced dissociation of methyl groups chemisorbed on semiconductor surfaces: (CH3)3Al adsorbed on GaAs and InSb," Chem. Phys. Lett. 288, 203-208 (1998).
[CrossRef]

Newns, D. M.

J. A. Misewich, T. F. Heinz, and D. M. Newns, "Desorption induced by multiple electronic-transitions," Phys. Rev. Lett. 68, 3737-3740 (1992).
[CrossRef] [PubMed]

Osgood, R. M.

R. M. Osgood and D. J. Ehrlich, "Optically induced microstructures in laser-photodeposited metal-films," Opt. Lett. 7, 385-387 (1982).
[CrossRef] [PubMed]

J. Ehrlich, R. M. Osgood, and T. F. Deutsch, "Spatially delineated growth of metal-films via photochemical pre-nucleation," Appl. Phys. Lett. 38, 946-948 (1981).
[CrossRef]

Parmigiani, F.

A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
[CrossRef]

Parriaux, O.

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, "Coupling gratings as waveguide functional elements," Pure Appl. Opt: J. European Opt. Soc. Part A 5, 453 (1996).
[CrossRef]

Piner, R. D.

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Raub, K.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

Romano, A.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

Rytzfroidevaux, Y.

Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982).
[CrossRef]

Salaita, K.

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

Salathe, R. P.

Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982).
[CrossRef]

Sato, M.

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

Schuler, H.

D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B-Opt.Phys. 13, 216-222 (1996).
[CrossRef]

Singmaster, K. A.

K. A. Singmaster, F. A. Houle, and R. J. Wilson, "Photochemical deposition of thin-films from the metal hexacarbonyls," J. Phys. Chem. 94, 6864-6875 (1990).
[CrossRef]

Sipe, J. E.

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface-structure on solids - a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

Su, M. Y.

M. Y. Su and R. P. Mirin, "Enhanced light extraction from circular Bragg grating coupled microcavities," Appl. Phys. Lett. 89033105 (2006).
[CrossRef]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Sychugov, V. A.

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, "Coupling gratings as waveguide functional elements," Pure Appl. Opt: J. European Opt. Soc. Part A 5, 453 (1996).
[CrossRef]

Tishchenko, A. V.

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, "Coupling gratings as waveguide functional elements," Pure Appl. Opt: J. European Opt. Soc. Part A 5, 453 (1996).
[CrossRef]

Tsao, J. Y.

J. Ehrlich and J. Y. Tsao, "Nonreciprocal laser-microchemical processing - spatial-resolution limits and demonstration of 0.2-μm linewidths," Appl. Phys. Lett. 44, 267-269 (1984).
[CrossRef]

van Driel, H. M.

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface-structure on solids - a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

Vega, R. A.

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

Venkataraman, B.

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

Vernon, M.

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

von der Linde, D.

D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B-Opt.Phys. 13, 216-222 (1996).
[CrossRef]

Wagner, A.

R. Haight, P. Longo, and A. Wagner, "Metal deposition with femtosecond light pulses at atmospheric pressure," J. Vac. Sci. Technol. A 21, 649-652 (2003).
[CrossRef]

Wang, Y. H.

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

Weber, H. P.

Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982).
[CrossRef]

Wilson, R. J.

K. A. Singmaster, F. A. Houle, and R. J. Wilson, "Photochemical deposition of thin-films from the metal hexacarbonyls," J. Phys. Chem. 94, 6864-6875 (1990).
[CrossRef]

R. J. Wilson and F. A. Houle, "Composition, structure, and electric-field variations in photodeposition," Phys. Rev. Lett. 55, 2184-2187 (1985).
[CrossRef] [PubMed]

Xia, Y. N.

M. Geissler and Y. N. Xia, "Patterning: Principles and some new developments," Adv. Mater. 16, 1249-1269 (2004).
[CrossRef]

Xu, F.

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
[CrossRef] [PubMed]

Young, J. F.

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface-structure on solids - a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

Zhang, Z. G.

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

Zhu, J.

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. Geissler and Y. N. Xia, "Patterning: Principles and some new developments," Adv. Mater. 16, 1249-1269 (2004).
[CrossRef]

Angew. Chem.-Int. Edit. (1)

K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006).
[CrossRef]

Appl. Phys. A-Mater. Sci. Process. (1)

Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982).
[CrossRef]

Appl. Phys. Lett. (3)

J. Ehrlich, R. M. Osgood, and T. F. Deutsch, "Spatially delineated growth of metal-films via photochemical pre-nucleation," Appl. Phys. Lett. 38, 946-948 (1981).
[CrossRef]

J. Ehrlich and J. Y. Tsao, "Nonreciprocal laser-microchemical processing - spatial-resolution limits and demonstration of 0.2-μm linewidths," Appl. Phys. Lett. 44, 267-269 (1984).
[CrossRef]

M. Y. Su and R. P. Mirin, "Enhanced light extraction from circular Bragg grating coupled microcavities," Appl. Phys. Lett. 89033105 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

C. P. A. Mulcahy, J. Eggeling, and T. S. Jones, "Low-energy electron beam induced dissociation of methyl groups chemisorbed on semiconductor surfaces: (CH3)3Al adsorbed on GaAs and InSb," Chem. Phys. Lett. 288, 203-208 (1998).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

J. Chem. Phys. (1)

B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990).
[CrossRef]

J. Phys. Chem. (1)

K. A. Singmaster, F. A. Houle, and R. J. Wilson, "Photochemical deposition of thin-films from the metal hexacarbonyls," J. Phys. Chem. 94, 6864-6875 (1990).
[CrossRef]

J. Vac. Sci. Technol. A (1)

R. Haight, P. Longo, and A. Wagner, "Metal deposition with femtosecond light pulses at atmospheric pressure," J. Vac. Sci. Technol. A 21, 649-652 (2003).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004).
[CrossRef]

MRS Bulletin (1)

P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. (1)

D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B-Opt.Phys. 13, 216-222 (1996).
[CrossRef]

Phys. Rev. B (1)

A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996).
[CrossRef]

Phys. Rev. Lett. (6)

J. A. Misewich, T. F. Heinz, and D. M. Newns, "Desorption induced by multiple electronic-transitions," Phys. Rev. Lett. 68, 3737-3740 (1992).
[CrossRef] [PubMed]

D. G. Busch and W. Ho, "Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry," Phys. Rev. Lett. 77, 1338-1341 (1996).
[CrossRef] [PubMed]

J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
[CrossRef]

R. J. Wilson and F. A. Houle, "Composition, structure, and electric-field variations in photodeposition," Phys. Rev. Lett. 55, 2184-2187 (1985).
[CrossRef] [PubMed]

H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface-structure on solids - a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982).
[CrossRef]

S. R. J. Brueck and D. J. Ehrlich, "Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser-photodeposited metal-films," Phys. Rev. Lett. 48, 1678-1681 (1982).
[CrossRef]

Pure Appl. Opt: J. European Opt. Soc. Part A (1)

O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, "Coupling gratings as waveguide functional elements," Pure Appl. Opt: J. European Opt. Soc. Part A 5, 453 (1996).
[CrossRef]

Science (1)

R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999).
[CrossRef] [PubMed]

Other (4)

N. Silvis-Cividjian, Electron Beam Induced Nanometer Scale Deposition (DUP Science, Netherlands, 2002).

D. Baüerle, Laser Processing and Chemistry (Springer, Berlin; New York, 2000).

A. Pique and D. B. Chrisey, Direct-Write Technologies for Rapid Prototyping: Applications to Sensors, Electronics, and Passivation Coatings (Academic Press, 2001).
[PubMed]

.H. Tsing-Hua, Z. Haitao, and T. Mingzhen, US patent pending.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic drawing of the experimental setup for the LCVD system. See texts for details. The inset illustrates nanogratings induced by a single 400-nm fs laser beam without any beam shaping.

Fig. 2.
Fig. 2.

Tungsten nanogratings on sapphire substrate: (a) SEM image of a typical nanograting grown under stationary growth mode. (b) AFM image and its cross section profile of a typical nanograting grown under similar conditions. (c-e) SEM images of different grating patterns grown under scanning growth mode: (c) longitudinal, (d) transverse, and (e) circular grating pattern. The white and the black arrows indicate the laser polarization and the scanning direction, respectively. Black dashed lines in (e) are for illustration purpose only and please refer to text for details.

Fig. 3.
Fig. 3.

EDX spectra on (a) bare sapphire substrate, (b) on tungsten nanogratings, and (c) on tungsten micron-sized dot. Insets are corresponding SEM images.

Fig. 4.
Fig. 4.

Top: SEM images of tungsten nanogratings on sapphire grown with laser power of 19 mW at exposure time of (a) 2 sec, (b) 4 sec, and (c) 6 sec. Bottom: nanogratings grown with the same exposure time of 4 sec at laser power of (d) 17 mW, (e) 22 mW, and (f) 24 mW. The scale bar applies to all images.

Fig. 5.
Fig. 5.

SEM images of longitudinal Tungsten gratings on sapphire substrates grown at various laser powers and scanning speeds. The scale bar is 500nm and applies to all images. Please refer to text for details.

Fig. 6.
Fig. 6.

SEM images of transverse Tungsten gratings on sapphire substrates grown at different laser powers and scanning speeds. The scale bar is 500nm, and applies to all images. Please refer to text for details.

Fig. 7.
Fig. 7.

SEM images of tungsten nanogratings on (a) glass with laser power 22 mW and scanning speed 0.2 μm/sec, (b) gallium nitride with 26 mW and 0.8 μm/sec, and (c) gold with 22 mW and exposure time 1s. The scale bar applies to all images.

Metrics