Abstract

Paradoxically, slow light promises to increase the speed of telecommunications in novel photonic structures, such as coupled resonators [1] and photonic crystals [2,3]. Apart from signal delays, the key consequence of slowing light down is the enhancement of light-matter interactions. Linear effects such as refractive index modulation scale linearly with slowdown in photonic crystals [3], and nonlinear effects are expected to scale with its square [4]. By directly observing the spatial compression of an optical pulse, by factor 25, we confirm the mechanism underlying this square scaling law. The key advantage of photonic structures over other slow light concepts is the potentially large bandwidth, which is crucial for telecommunications [5]. Nevertheless, the slow light previously observed in photonic crystals [2,3,6,7] has been very dispersive and featured narrow bandwidth. We demonstrate slow light with a bandwidth of 2.5 THz and a delay-bandwidth product of 30, which is an order of magnitude larger than any reported so far.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
    [CrossRef]
  2. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  4. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3,211-219 (2004).
    [CrossRef] [PubMed]
  5. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005).
    [CrossRef]
  6. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  7. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658-1672 (2006).
    [CrossRef] [PubMed]
  8. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography," Opt. Express 14, 2440-2245 (2006).
    [CrossRef] [PubMed]
  9. Johnson, S. G. , & Joannopoulos, J. D. , "Block-iterative frequency-domain methods for Maxwell's equations in a planewave," Opt. Express 8, 173-190, (2001).
    [CrossRef] [PubMed]
  10. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi and H-Y Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561, 2004.
    [CrossRef] [PubMed]
  11. A. Yu. Petrov, and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868, (2004).
    [CrossRef]
  12. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006).
    [CrossRef] [PubMed]
  13. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
    [CrossRef] [PubMed]
  14. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
    [CrossRef] [PubMed]
  15. M. Miyagi and S. Nishida, "Pulse spreading in a single-mode fiber due to 3rd-order dispersion," Appl. Opt. 18, 678-682, (1979).
    [CrossRef] [PubMed]
  16. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005).
    [CrossRef] [PubMed]
  17. A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
    [CrossRef] [PubMed]
  18. P. C. Ku, F. Sedgwich, C. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291 - 2293 (2004).
    [CrossRef] [PubMed]
  19. J. Sharping, Y. Okawachi, and A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  20. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
    [CrossRef]
  21. Y. A. Vlasov, and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50 - 52 (2006).
    [CrossRef] [PubMed]

2006 (4)

2005 (6)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005).
[CrossRef]

J. Sharping, Y. Okawachi, and A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

2002 (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

2001 (3)

Johnson, S. G. , & Joannopoulos, J. D. , "Block-iterative frequency-domain methods for Maxwell's equations in a planewave," Opt. Express 8, 173-190, (2001).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

1995 (1)

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

1979 (1)

Asakawa, K.

Balistreri, M. L. M.

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

Borel, P. I.

Chang, S. W.

Chang-Hasnain, C.

Chuang, S. L.

Eich, M.

A. Yu. Petrov, and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868, (2004).
[CrossRef]

Engelen, R. J. P.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658-1672 (2006).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fage-Pedersen, J.

Frandsen, L. H.

Gaeta, A.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Harris, S. E.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

Ikeda, N.

Jain, M.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Jin, G. Y.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3,211-219 (2004).
[CrossRef] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

Joannopoulos, S. G.

Johnson,

Johnson, S. G.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Khurgin, J. B.

Korterik, J. P.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658-1672 (2006).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Krauss, T. F.

M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography," Opt. Express 14, 2440-2245 (2006).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Ku, P. C.

Kuipers, L.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658-1672 (2006).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Kuramochi, E.

Lavrinenko, A. V.

Li, T.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

Martinelli, M.

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50 - 52 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Melloni, A.

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

Michaeli,, A.

Mitsugi, S.

Miyagi, M.

Morichetti, F.

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

Nishida, S.

Notomi, M.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi and H-Y Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561, 2004.
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Okawachi, Y.

Palinginis, P.

Petrov, A. Yu.

A. Yu. Petrov, and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868, (2004).
[CrossRef]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Ryu, H-Y

Salib, M.

Sedgwich, F.

Settle, M.

Sharping, J.

Shinya, A.

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi and H-Y Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561, 2004.
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3,211-219 (2004).
[CrossRef] [PubMed]

Sugimoto, Y.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

van Hulst, N. F.

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658-1672 (2006).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50 - 52 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Wang, H.

Watanabe, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Yu. Petrov, and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868, (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Nature Mater. (1)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3,211-219 (2004).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003).
[CrossRef]

Phys. Rev. E (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002).
[CrossRef]

Phys. Rev. Lett. (5)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Science (1)

M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Top view and cross-section of the W2 waveguide used in the experiments. The lattice period is 420 nm and the hole diameter is 235 nm (r/a=0.28).

Fig. 2.
Fig. 2.

Comparison of W2 bandstructure calculated by 2D plane wave expansion and 3D FDTD calculation. The mode symmetries are indicated on the left (Hy field components) with the numbers referring to the corresponding points on the bandstructure. Different coloured points in the 3D calculation denote different modes. The light line for the silica cladding is indicated by the dashed diagonal line. The slow light region of interest is highlighted by the oval.

Fig. 3.
Fig. 3.

Bandstructure obtained by PSNOM measurement with 3D FDTD calculation overlaid. The FDTD points for the TE mode (blue dots) are identical to those shown in Fig. 2 and show very good agreement with the measured data. The TM mode (black dots) can be identified at k>0.43 2π/a by the fact that it has a weak interaction with the photonic crystal lattice, and therefore does not show a clear stopband at the Brillouin zone band-edge, i.e. it appears as a straight diagonal line. The dashed line represents the light line for air.

Fig. 4.
Fig. 4.

Tracing pulse propagation in the slow mode with fs pulses. (a) Experimental result of tracing the pulses propagating in the waveguide. (b) Experimental result obtained by Fourier filtering the slow mode. The Fourier filtering highlights the properties of the slow mode (c) Simulated pulse propagation derived from the dispersion curve for comparison with (b).

Fig.5.
Fig.5.

Slow pulse propagating near the entrance of the W2 waveguide, highlighting the compression from 167 μm for the equivalent cut-off spectrum down to 6.8 μm for the measured spectrum.

Tables (2)

Tables Icon

Table 1. Comparison of second and third order dispersion in W1 and W2 waveguides. Data for W1 waveguides are derived from [7].

Tables Icon

Table 2. Comparison of a range of slow light systems.

Metrics