Abstract

We numerically calculated the formation of Brillouin precursor in a single resonance Lorentz medium. The contribution from medium dispersion and absorption in the formation of Brillouin precursor is described. Numerical calculations show that Brillouin precursor can be observed for pulses in the THz region propagating in ZnTe.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, Wave propagation and group velocity (Academic, New York, 1960).
  2. P. Pleshko and I. Palócz, "Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain," Phys. Rev. Lett. 22, 1201-1204 (1969).
    [CrossRef]
  3. J. Aaviksoo, J. Kuhl, and K. Ploog, "Observation of optical precursors at pulse propagation in GaAs," Phys. Rev. A 44, 5353-5356 (1991).
    [CrossRef]
  4. M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
    [CrossRef]
  5. S. -H. Choi and U. Österberg, "Observation of optical precursors in water," Phys. Rev. Lett. 92, 193903 (2004).
    [CrossRef] [PubMed]
  6. T. M. Roberts, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 93, 269401 (2004).
    [CrossRef]
  7. R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
    [CrossRef] [PubMed]
  8. M. Kelbert, I. Sazonov, Pulses and other wave processes in fluids (Kluwer, 1996)
  9. G. C. Sherman and K. E. Oughstun, "Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves," Phys. Rev. Lett. 47, 1451-1454 (1981).
    [CrossRef]
  10. K. E. Oughstun and G. C. Sherman, "Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium)," J. Opt. Soc. Am. B 5, 817-849 (1988).
    [CrossRef]
  11. K. E. Oughstun, and J. E. K. Laurens, "Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium," Radio Sci. 26, 245-258 (1991).
    [CrossRef]
  12. R. M. Joseph, S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt. Lett. 16, 1412 (1991).
    [CrossRef] [PubMed]
  13. P. Wyns, D. P. Foty, and K. E. Oughstun, "Numerical analysis of the precursors fields in linear dispersive pulse propagation," J. Opt. Soc. Am. A 6, 1421 (1989).
    [CrossRef]
  14. J. C. Lin, "Interaction of electromagnetic radiation with biological materials," IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
    [CrossRef]
  15. R. Albanese, J. Penn, and R. Medina, "Short-rise-time microwave pulse propagation through dispersive biological media," J. Opt. Soc. Am. A 6, 1441 (1989).
    [CrossRef]
  16. K. E. Oughstun, "Computational methods in ultrafast time-domain optics," Comput. Sci. Eng. 5, 22 (2003).
    [CrossRef]
  17. J. D. Jackson, Classical Electrodynamics 2nd ed. (John Wiley & Sons, New York, 1975).
  18. T. M. Roberts, and P. G. Petropoulos, "Asymptotics and energy estimates for electromagnetic pulses in dispersive media," J. Opt. Soc. Am. A 13, 1204 (1996).
    [CrossRef]
  19. G. C. Sherman, and K. E. Oughstun, "Energy-velocity description of pulse propagation in absorbing, dispersive dielectrics," J. Opt. Soc. Am. B 12, 229 (1995).
    [CrossRef]
  20. T. M. Roberts, "Radiated pulses decay exponentially in materials in the far fields of antennas," Electron. Lett. 38, 679-680 (2002).
    [CrossRef]
  21. T. M. Roberts, "Measured and predicted behavior of pulses in Debye- and Lorentz-type materials," IEEE Trans. Antennas. and Propag. 52, 310-314 (2004).
    [CrossRef]
  22. S. Chu and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-742 (1982).
    [CrossRef]
  23. K. E. Oughstun, "Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics," IEEE Trans. Antennas. Propag. 53, 1582 (2005).
    [CrossRef]
  24. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  25. X. -C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
    [CrossRef]
  26. M. van Exter, Ch. Fattinger, and D. Grischkowsky, "High-brightness terahertz beams characterized with an ultrafast detector," Appl. Phys. Lett. 55, 337-339 (1989).
    [CrossRef]
  27. Q. Wu and X.-C Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
    [CrossRef]
  28. H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, "Distortion of terahertz pulses in electro-optic sampling," J. Opt. Soc. Am. B 15, 1795-1801 (1998).
    [CrossRef]
  29. A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
    [CrossRef]

2005 (2)

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
[CrossRef] [PubMed]

K. E. Oughstun, "Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics," IEEE Trans. Antennas. Propag. 53, 1582 (2005).
[CrossRef]

2004 (3)

S. -H. Choi and U. Österberg, "Observation of optical precursors in water," Phys. Rev. Lett. 92, 193903 (2004).
[CrossRef] [PubMed]

T. M. Roberts, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 93, 269401 (2004).
[CrossRef]

T. M. Roberts, "Measured and predicted behavior of pulses in Debye- and Lorentz-type materials," IEEE Trans. Antennas. and Propag. 52, 310-314 (2004).
[CrossRef]

2003 (1)

K. E. Oughstun, "Computational methods in ultrafast time-domain optics," Comput. Sci. Eng. 5, 22 (2003).
[CrossRef]

2002 (2)

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

T. M. Roberts, "Radiated pulses decay exponentially in materials in the far fields of antennas," Electron. Lett. 38, 679-680 (2002).
[CrossRef]

1998 (1)

1997 (1)

Q. Wu and X.-C Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

1996 (2)

T. M. Roberts, and P. G. Petropoulos, "Asymptotics and energy estimates for electromagnetic pulses in dispersive media," J. Opt. Soc. Am. A 13, 1204 (1996).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

1995 (1)

1991 (3)

R. M. Joseph, S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt. Lett. 16, 1412 (1991).
[CrossRef] [PubMed]

J. Aaviksoo, J. Kuhl, and K. Ploog, "Observation of optical precursors at pulse propagation in GaAs," Phys. Rev. A 44, 5353-5356 (1991).
[CrossRef]

K. E. Oughstun, and J. E. K. Laurens, "Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium," Radio Sci. 26, 245-258 (1991).
[CrossRef]

1990 (2)

X. -C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
[CrossRef]

1989 (3)

1988 (1)

1982 (1)

S. Chu and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-742 (1982).
[CrossRef]

1981 (1)

G. C. Sherman and K. E. Oughstun, "Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves," Phys. Rev. Lett. 47, 1451-1454 (1981).
[CrossRef]

1975 (1)

J. C. Lin, "Interaction of electromagnetic radiation with biological materials," IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
[CrossRef]

1969 (1)

P. Pleshko and I. Palócz, "Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain," Phys. Rev. Lett. 22, 1201-1204 (1969).
[CrossRef]

Aaviksoo, J.

J. Aaviksoo, J. Kuhl, and K. Ploog, "Observation of optical precursors at pulse propagation in GaAs," Phys. Rev. A 44, 5353-5356 (1991).
[CrossRef]

Albanese, R.

Alfano, R. R.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
[CrossRef] [PubMed]

Alrubaiee, M.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
[CrossRef] [PubMed]

Auston, D. H.

X. -C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Bakker, H. J.

Birman, J. L.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
[CrossRef] [PubMed]

Cho, G. C.

Choi, S. -H.

S. -H. Choi and U. Österberg, "Observation of optical precursors in water," Phys. Rev. Lett. 92, 193903 (2004).
[CrossRef] [PubMed]

Chu, S.

S. Chu and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-742 (1982).
[CrossRef]

Darrow, J. T.

X. -C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Das, B. B.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
[CrossRef] [PubMed]

Ema, K.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Fattinger, Ch.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, "High-brightness terahertz beams characterized with an ultrafast detector," Appl. Phys. Lett. 55, 337-339 (1989).
[CrossRef]

Foty, D. P.

Grischkowsky, D.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, "High-brightness terahertz beams characterized with an ultrafast detector," Appl. Phys. Lett. 55, 337-339 (1989).
[CrossRef]

Hagness, S. C.

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Hu, B. B.

X. -C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Joseph, R. M.

Kawase, J.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Keiding, S.

Kuhl, J.

J. Aaviksoo, J. Kuhl, and K. Ploog, "Observation of optical precursors at pulse propagation in GaAs," Phys. Rev. A 44, 5353-5356 (1991).
[CrossRef]

Kunugita, H.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Kurz, H.

Kuwata-Gonokami, M.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Laurens, J. E. K.

K. E. Oughstun, and J. E. K. Laurens, "Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium," Radio Sci. 26, 245-258 (1991).
[CrossRef]

Lin, J. C.

J. C. Lin, "Interaction of electromagnetic radiation with biological materials," IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
[CrossRef]

Medina, R.

Nagai, M.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Nakahara, R.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Ni, X.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
[CrossRef] [PubMed]

Österberg, U.

S. -H. Choi and U. Österberg, "Observation of optical precursors in water," Phys. Rev. Lett. 92, 193903 (2004).
[CrossRef] [PubMed]

Oughstun, K. E.

K. E. Oughstun, "Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics," IEEE Trans. Antennas. Propag. 53, 1582 (2005).
[CrossRef]

K. E. Oughstun, "Computational methods in ultrafast time-domain optics," Comput. Sci. Eng. 5, 22 (2003).
[CrossRef]

G. C. Sherman, and K. E. Oughstun, "Energy-velocity description of pulse propagation in absorbing, dispersive dielectrics," J. Opt. Soc. Am. B 12, 229 (1995).
[CrossRef]

K. E. Oughstun, and J. E. K. Laurens, "Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium," Radio Sci. 26, 245-258 (1991).
[CrossRef]

P. Wyns, D. P. Foty, and K. E. Oughstun, "Numerical analysis of the precursors fields in linear dispersive pulse propagation," J. Opt. Soc. Am. A 6, 1421 (1989).
[CrossRef]

K. E. Oughstun and G. C. Sherman, "Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium)," J. Opt. Soc. Am. B 5, 817-849 (1988).
[CrossRef]

G. C. Sherman and K. E. Oughstun, "Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves," Phys. Rev. Lett. 47, 1451-1454 (1981).
[CrossRef]

Palócz, I.

P. Pleshko and I. Palócz, "Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain," Phys. Rev. Lett. 22, 1201-1204 (1969).
[CrossRef]

Penn, J.

Petropoulos, P. G.

Pleshko, P.

P. Pleshko and I. Palócz, "Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain," Phys. Rev. Lett. 22, 1201-1204 (1969).
[CrossRef]

Ploog, K.

J. Aaviksoo, J. Kuhl, and K. Ploog, "Observation of optical precursors at pulse propagation in GaAs," Phys. Rev. A 44, 5353-5356 (1991).
[CrossRef]

Roberts, T. M.

T. M. Roberts, "Measured and predicted behavior of pulses in Debye- and Lorentz-type materials," IEEE Trans. Antennas. and Propag. 52, 310-314 (2004).
[CrossRef]

T. M. Roberts, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 93, 269401 (2004).
[CrossRef]

T. M. Roberts, "Radiated pulses decay exponentially in materials in the far fields of antennas," Electron. Lett. 38, 679-680 (2002).
[CrossRef]

T. M. Roberts, and P. G. Petropoulos, "Asymptotics and energy estimates for electromagnetic pulses in dispersive media," J. Opt. Soc. Am. A 13, 1204 (1996).
[CrossRef]

Sakai, M.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Sherman, G. C.

Taflove, A.

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, "High-brightness terahertz beams characterized with an ultrafast detector," Appl. Phys. Lett. 55, 337-339 (1989).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Wong, S.

S. Chu and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-742 (1982).
[CrossRef]

Wu, Q.

Wyns, P.

Zhang, X. -C.

X. -C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

Zhang, X.-C

Q. Wu and X.-C Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

Zhang, X.-C.

Appl. Phys. Lett. (4)

X. -C. Zhang, B. B. Hu, J. T. Darrow and D. H. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Appl. Phys. Lett. 56, 1011-1013 (1990).
[CrossRef]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, "High-brightness terahertz beams characterized with an ultrafast detector," Appl. Phys. Lett. 55, 337-339 (1989).
[CrossRef]

Q. Wu and X.-C Zhang, "7 terahertz broadband GaP electro-optic sensor," Appl. Phys. Lett. 70, 1784-1786 (1997).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
[CrossRef]

Comput. Sci. Eng. (1)

K. E. Oughstun, "Computational methods in ultrafast time-domain optics," Comput. Sci. Eng. 5, 22 (2003).
[CrossRef]

Electron. Lett. (1)

T. M. Roberts, "Radiated pulses decay exponentially in materials in the far fields of antennas," Electron. Lett. 38, 679-680 (2002).
[CrossRef]

IEEE Trans. Antennas. and Propag. (1)

T. M. Roberts, "Measured and predicted behavior of pulses in Debye- and Lorentz-type materials," IEEE Trans. Antennas. and Propag. 52, 310-314 (2004).
[CrossRef]

IEEE Trans. Antennas. Propag. (1)

K. E. Oughstun, "Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics," IEEE Trans. Antennas. Propag. 53, 1582 (2005).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

J. C. Lin, "Interaction of electromagnetic radiation with biological materials," IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (4)

Opt. Lett. (1)

Phys. Rev. A (1)

J. Aaviksoo, J. Kuhl, and K. Ploog, "Observation of optical precursors at pulse propagation in GaAs," Phys. Rev. A 44, 5353-5356 (1991).
[CrossRef]

Phys. Rev. B (1)

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, M. Kuwata-Gonokami, "Polariton pulse propagation at excitation resonance in CuCl: Polariton beat and optical precursor," Phys. Rev. B 66, 33302 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

S. -H. Choi and U. Österberg, "Observation of optical precursors in water," Phys. Rev. Lett. 92, 193903 (2004).
[CrossRef] [PubMed]

T. M. Roberts, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 93, 269401 (2004).
[CrossRef]

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, "Comment on observation of optical precursors in water," Phys. Rev. Lett. 94, 239401 (2005).
[CrossRef] [PubMed]

P. Pleshko and I. Palócz, "Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain," Phys. Rev. Lett. 22, 1201-1204 (1969).
[CrossRef]

G. C. Sherman and K. E. Oughstun, "Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves," Phys. Rev. Lett. 47, 1451-1454 (1981).
[CrossRef]

S. Chu and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-742 (1982).
[CrossRef]

Radio Sci. (1)

K. E. Oughstun, and J. E. K. Laurens, "Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium," Radio Sci. 26, 245-258 (1991).
[CrossRef]

Other (3)

L. Brillouin, Wave propagation and group velocity (Academic, New York, 1960).

M. Kelbert, I. Sazonov, Pulses and other wave processes in fluids (Kluwer, 1996)

J. D. Jackson, Classical Electrodynamics 2nd ed. (John Wiley & Sons, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Real (nr ) (black solid curve) and imaginary (ni ) (black dotted curve) parts of the refraction index of the Lorentz dielectric medium. The red curve represents the spectrum of the incident pulse. (ω0 = 40/fs, ωp = 44.7/fs and γ = 5.6/fs.)

Fig. 2.
Fig. 2.

Evolution of the propagated field amplitude (2T=0.314 fs, ωc =10/fs). The red dot represents the arrival of light with phase velocity c/n(0). The blue dot indicates the peak amplitude for z = 10 μm and 100 μm

Fig. 3.
Fig. 3.

Evolution of the propagated field amplitude (2T=3.14×10-16s, coc=1×1016/s). The real part of the refraction index is set to a constant value, the value at the carrier frequency.

Fig. 4.
Fig. 4.

Peak amplitude of the propagated field. The scatters(solid squares) are the numerically calculated amplitudes. The solid curves are the exponential decay with absorption at the carrier frequency (10/fs) and at 3.89/fs. The inset is the propagated field at 100 μm with the contribution from above the 2.5/fs frequency component.

Fig. 5.
Fig. 5.

Numerically determined dynamical evolution of the propagated field for an input THz wave in a ZnTe crystal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A z t = 1 2 π + dωE 0 ω exp [ i ( kz ωt ) ] ,
E 0 ω = + E 0 t e iωt dt .
n 2 ( ω ) = 1 ω p 2 ω 2 ω 0 2 + iγω ,
E 0 t = e t 2 T 2 sin ( ω c t ) .
A z t = T 2 π ½ Re { + e ( T 2 4 ) ( ω ω c ) 2 e i ( ik ωt ) } .
n ( ω ) = ε ( ω ) = ( ε el ε st ω TO 2 ω 2 ω TO 2 2 iγω ) ½ ,
E 0 t = ( t σ ) e 2 ( ln 2 ) t 2 σ 2 ,

Metrics