Abstract

We numerically calculated the formation of Brillouin precursor in a single resonance Lorentz medium. The contribution from medium dispersion and absorption in the formation of Brillouin precursor is described. Numerical calculations show that Brillouin precursor can be observed for pulses in the THz region propagating in ZnTe.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, Wave propagation and group velocity (Academic, New York, 1960).
  2. P. Pleshko and I. Palócz, “Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain,” Phys. Rev. Lett. 22, 1201–1204 (1969).
    [Crossref]
  3. J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A 44, 5353–5356 (1991).
    [Crossref]
  4. M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
    [Crossref]
  5. S. -H. Choi and U. Österberg, “Observation of optical precursors in water,” Phys. Rev. Lett. 92, 193903 (2004).
    [Crossref] [PubMed]
  6. T. M. Roberts, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 93, 269401 (2004).
    [Crossref]
  7. R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
    [Crossref] [PubMed]
  8. M. Kelbert and I. Sazonov, Pulses and other wave processes in fluids (Kluwer, 1996)
  9. G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett. 47, 1451–1454 (1981).
    [Crossref]
  10. K. E. Oughstun and G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B 5, 817–849 (1988).
    [Crossref]
  11. K. E. Oughstun and J. E. K. Laurens, “Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium,” Radio Sci. 26, 245–258 (1991).
    [Crossref]
  12. R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett. 16, 1412 (1991).
    [Crossref] [PubMed]
  13. P. Wyns, D. P. Foty, and K. E. Oughstun, “Numerical analysis of the precursors fields in linear dispersive pulse propagation,” J. Opt. Soc. Am. A 6, 1421 (1989).
    [Crossref]
  14. J. C. Lin, “Interaction of electromagnetic radiation with biological materials,” IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
    [Crossref]
  15. R. Albanese, J. Penn, and R. Medina, “Short-rise-time microwave pulse propagation through dispersive biological media,” J. Opt. Soc. Am. A 6, 1441 (1989).
    [Crossref]
  16. K. E. Oughstun, “Computational methods in ultrafast time-domain optics,” Computing in Science & Engineering 5, 22 (2003).
    [Crossref]
  17. J. D. Jackson, Classical Electrodynamics 2nd ed. (John Wiley & Sons, New York, 1975).
  18. T. M. Roberts and P. G. Petropoulos, “Asymptotics and energy estimates for electromagnetic pulses in dispersive media,” J. Opt. Soc. Am. A 13, 1204 (1996).
    [Crossref]
  19. G. C. Sherman and K. E. Oughstun, “Energy-velocity description of pulse propagation in absorbing, dispersive dielectrics,” J. Opt. Soc. Am. B 12, 229 (1995).
    [Crossref]
  20. T. M. Roberts, “Radiated pulses decay exponentially in materials in the far fields of antennas,” Electron. Lett. 38, 679–680 (2002).
    [Crossref]
  21. T. M. Roberts, “Measured and predicted behavior of pulses in Debye- and Lorentz-type materials,” IEEE Trans. Ant. and Prop. 52, 310–314 (2004).
    [Crossref]
  22. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–742 (1982).
    [Crossref]
  23. K. E. Oughstun, “Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop. 53, 1582 (2005).
    [Crossref]
  24. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  25. X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
    [Crossref]
  26. M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
    [Crossref]
  27. Q. Wu and X.-C Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
    [Crossref]
  28. H. J. Bakker, G. C. Cho, H. Kurz, Q. Wu, and X.-C. Zhang, “Distortion of terahertz pulses in electro-optic sampling,” J. Opt. Soc. Am. B 15, 1795–1801 (1998).
    [Crossref]
  29. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [Crossref]

2005 (2)

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
[Crossref] [PubMed]

K. E. Oughstun, “Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop. 53, 1582 (2005).
[Crossref]

2004 (3)

T. M. Roberts, “Measured and predicted behavior of pulses in Debye- and Lorentz-type materials,” IEEE Trans. Ant. and Prop. 52, 310–314 (2004).
[Crossref]

S. -H. Choi and U. Österberg, “Observation of optical precursors in water,” Phys. Rev. Lett. 92, 193903 (2004).
[Crossref] [PubMed]

T. M. Roberts, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 93, 269401 (2004).
[Crossref]

2003 (1)

K. E. Oughstun, “Computational methods in ultrafast time-domain optics,” Computing in Science & Engineering 5, 22 (2003).
[Crossref]

2002 (2)

T. M. Roberts, “Radiated pulses decay exponentially in materials in the far fields of antennas,” Electron. Lett. 38, 679–680 (2002).
[Crossref]

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

1998 (1)

1997 (1)

Q. Wu and X.-C Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[Crossref]

1996 (2)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

T. M. Roberts and P. G. Petropoulos, “Asymptotics and energy estimates for electromagnetic pulses in dispersive media,” J. Opt. Soc. Am. A 13, 1204 (1996).
[Crossref]

1995 (1)

1991 (3)

K. E. Oughstun and J. E. K. Laurens, “Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium,” Radio Sci. 26, 245–258 (1991).
[Crossref]

R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett. 16, 1412 (1991).
[Crossref] [PubMed]

J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A 44, 5353–5356 (1991).
[Crossref]

1990 (2)

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[Crossref]

1989 (3)

1988 (1)

1982 (1)

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–742 (1982).
[Crossref]

1981 (1)

G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett. 47, 1451–1454 (1981).
[Crossref]

1975 (1)

J. C. Lin, “Interaction of electromagnetic radiation with biological materials,” IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
[Crossref]

1969 (1)

P. Pleshko and I. Palócz, “Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain,” Phys. Rev. Lett. 22, 1201–1204 (1969).
[Crossref]

Aaviksoo, J.

J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A 44, 5353–5356 (1991).
[Crossref]

Albanese, R.

Alfano, R. R.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
[Crossref] [PubMed]

Alrubaiee, M.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
[Crossref] [PubMed]

Auston, D. H.

X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[Crossref]

Bakker, H. J.

Birman, J. L.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
[Crossref] [PubMed]

Brillouin, L.

L. Brillouin, Wave propagation and group velocity (Academic, New York, 1960).

Cho, G. C.

Choi, S. -H.

S. -H. Choi and U. Österberg, “Observation of optical precursors in water,” Phys. Rev. Lett. 92, 193903 (2004).
[Crossref] [PubMed]

Chu, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–742 (1982).
[Crossref]

Darrow, J. T.

X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[Crossref]

Das, B. B.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
[Crossref] [PubMed]

Ema, K.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Exter, M. van

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[Crossref]

Fattinger, Ch.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[Crossref]

Foty, D. P.

Grischkowsky, D.

D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[Crossref]

Hagness, S. C.

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

Hu, B. B.

X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics 2nd ed. (John Wiley & Sons, New York, 1975).

Joseph, R. M.

Kawase, J.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Keiding, S.

Kelbert, M.

M. Kelbert and I. Sazonov, Pulses and other wave processes in fluids (Kluwer, 1996)

Kuhl, J.

J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A 44, 5353–5356 (1991).
[Crossref]

Kunugita, H.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Kurz, H.

Kuwata-Gonokami, M.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Laurens, J. E. K.

K. E. Oughstun and J. E. K. Laurens, “Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium,” Radio Sci. 26, 245–258 (1991).
[Crossref]

Lin, J. C.

J. C. Lin, “Interaction of electromagnetic radiation with biological materials,” IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
[Crossref]

Medina, R.

Nagai, M.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

Nakahara, R.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Ni, X.

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
[Crossref] [PubMed]

Österberg, U.

S. -H. Choi and U. Österberg, “Observation of optical precursors in water,” Phys. Rev. Lett. 92, 193903 (2004).
[Crossref] [PubMed]

Oughstun, K. E.

K. E. Oughstun, “Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop. 53, 1582 (2005).
[Crossref]

K. E. Oughstun, “Computational methods in ultrafast time-domain optics,” Computing in Science & Engineering 5, 22 (2003).
[Crossref]

G. C. Sherman and K. E. Oughstun, “Energy-velocity description of pulse propagation in absorbing, dispersive dielectrics,” J. Opt. Soc. Am. B 12, 229 (1995).
[Crossref]

K. E. Oughstun and J. E. K. Laurens, “Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium,” Radio Sci. 26, 245–258 (1991).
[Crossref]

P. Wyns, D. P. Foty, and K. E. Oughstun, “Numerical analysis of the precursors fields in linear dispersive pulse propagation,” J. Opt. Soc. Am. A 6, 1421 (1989).
[Crossref]

K. E. Oughstun and G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B 5, 817–849 (1988).
[Crossref]

G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett. 47, 1451–1454 (1981).
[Crossref]

Palócz, I.

P. Pleshko and I. Palócz, “Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain,” Phys. Rev. Lett. 22, 1201–1204 (1969).
[Crossref]

Penn, J.

Petropoulos, P. G.

Pleshko, P.

P. Pleshko and I. Palócz, “Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain,” Phys. Rev. Lett. 22, 1201–1204 (1969).
[Crossref]

Ploog, K.

J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A 44, 5353–5356 (1991).
[Crossref]

Roberts, T. M.

T. M. Roberts, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 93, 269401 (2004).
[Crossref]

T. M. Roberts, “Measured and predicted behavior of pulses in Debye- and Lorentz-type materials,” IEEE Trans. Ant. and Prop. 52, 310–314 (2004).
[Crossref]

T. M. Roberts, “Radiated pulses decay exponentially in materials in the far fields of antennas,” Electron. Lett. 38, 679–680 (2002).
[Crossref]

T. M. Roberts and P. G. Petropoulos, “Asymptotics and energy estimates for electromagnetic pulses in dispersive media,” J. Opt. Soc. Am. A 13, 1204 (1996).
[Crossref]

Sakai, M.

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Sazonov, I.

M. Kelbert and I. Sazonov, Pulses and other wave processes in fluids (Kluwer, 1996)

Sherman, G. C.

Taflove, A.

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

Wong, S.

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–742 (1982).
[Crossref]

Wu, Q.

Wyns, P.

Zhang, X. -C.

X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[Crossref]

Zhang, X.-C

Q. Wu and X.-C Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[Crossref]

Zhang, X.-C.

Appl. Phys. Lett. (4)

X. -C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett. 56, 1011–1013 (1990).
[Crossref]

M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989).
[Crossref]

Q. Wu and X.-C Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[Crossref]

Computing in Science & Engineering (1)

K. E. Oughstun, “Computational methods in ultrafast time-domain optics,” Computing in Science & Engineering 5, 22 (2003).
[Crossref]

Electron. Lett. (1)

T. M. Roberts, “Radiated pulses decay exponentially in materials in the far fields of antennas,” Electron. Lett. 38, 679–680 (2002).
[Crossref]

IEEE Trans. Ant. and Prop. (1)

T. M. Roberts, “Measured and predicted behavior of pulses in Debye- and Lorentz-type materials,” IEEE Trans. Ant. and Prop. 52, 310–314 (2004).
[Crossref]

IEEE Trans. Ant. Prop. (1)

K. E. Oughstun, “Dynamics evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop. 53, 1582 (2005).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

J. C. Lin, “Interaction of electromagnetic radiation with biological materials,” IEEE Trans. Electromagn. Compat. EMC-17, 93 (1975)
[Crossref]

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (4)

Opt. Lett. (1)

Phys. Rev. A (1)

J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A 44, 5353–5356 (1991).
[Crossref]

Phys. Rev. B (1)

M. Sakai, R. Nakahara, J. Kawase, H. Kunugita, K. Ema, M. Nagai, and M. Kuwata-Gonokami, “Polariton puls propagation at excitation resonance in CuCl: Polariton beat and optical precursor,” Phys. Rev. B 66, 33302 (2002).
[Crossref]

Phys. Rev. Lett. (6)

S. -H. Choi and U. Österberg, “Observation of optical precursors in water,” Phys. Rev. Lett. 92, 193903 (2004).
[Crossref] [PubMed]

T. M. Roberts, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 93, 269401 (2004).
[Crossref]

R. R. Alfano, J. L. Birman, X. Ni, M. Alrubaiee, and B. B. Das, “Comment on observation of optical precursors in water,” Phys. Rev. Lett. 94, 239401 (2005).
[Crossref] [PubMed]

P. Pleshko and I. Palócz, “Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain,” Phys. Rev. Lett. 22, 1201–1204 (1969).
[Crossref]

G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett. 47, 1451–1454 (1981).
[Crossref]

S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–742 (1982).
[Crossref]

Radio Sci. (1)

K. E. Oughstun and J. E. K. Laurens, “Asymptotic description of ultrashort electromagnetic pulse propagation in a linear, causally dispersive medium,” Radio Sci. 26, 245–258 (1991).
[Crossref]

Other (3)

L. Brillouin, Wave propagation and group velocity (Academic, New York, 1960).

M. Kelbert and I. Sazonov, Pulses and other wave processes in fluids (Kluwer, 1996)

J. D. Jackson, Classical Electrodynamics 2nd ed. (John Wiley & Sons, New York, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Real (nr ) (black solid curve) and imaginary (ni ) (black dotted curve) parts of the refraction index of the Lorentz dielectric medium. The red curve represents the spectrum of the incident pulse. (ω0 = 40/fs, ωp = 44.7/fs and γ = 5.6/fs.)

Fig. 2.
Fig. 2.

Evolution of the propagated field amplitude (2T=0.314 fs, ωc =10/fs). The red dot represents the arrival of light with phase velocity c/n(0). The blue dot indicates the peak amplitude for z = 10 μm and 100 μm

Fig. 3.
Fig. 3.

Evolution of the propagated field amplitude (2T=3.14×10-16s, coc=1×1016/s). The real part of the refraction index is set to a constant value, the value at the carrier frequency.

Fig. 4.
Fig. 4.

Peak amplitude of the propagated field. The scatters(solid squares) are the numerically calculated amplitudes. The solid curves are the exponential decay with absorption at the carrier frequency (10/fs) and at 3.89/fs. The inset is the propagated field at 100 μm with the contribution from above the 2.5/fs frequency component.

Fig. 5.
Fig. 5.

Numerically determined dynamical evolution of the propagated field for an input THz wave in a ZnTe crystal.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A z t = 1 2 π + dωE 0 ω exp [ i ( kz ωt ) ] ,
E 0 ω = + E 0 t e iωt dt .
n 2 ( ω ) = 1 ω p 2 ω 2 ω 0 2 + iγω ,
E 0 t = e t 2 T 2 sin ( ω c t ) .
A z t = T 2 π ½ Re { + e ( T 2 4 ) ( ω ω c ) 2 e i ( ik ωt ) } .
n ( ω ) = ε ( ω ) = ( ε el ε st ω TO 2 ω 2 ω TO 2 2 iγω ) ½ ,
E 0 t = ( t σ ) e 2 ( ln 2 ) t 2 σ 2 ,

Metrics