Abstract

We demonstrate the use of holographic optical tweezers for trapping particles in air, specifically aerosol droplets. We show the trapping and manipulation of arrays of liquid aerosols as well as the controlled coagulation of two or more droplets. We discuss the ability of spatial light modulators to manipulate airborne droplets in real time as well as highlight the difficulties associated with loading and trapping particles in such an environment. We conclude with a discussion of some of the applications of such a technique.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkhom, and S. Chu, “Observation of a single beam gradient force trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  3. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
    [Crossref] [PubMed]
  4. S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
    [Crossref] [PubMed]
  5. P. T. Korda, G. C. Spalding, and D. G. Grier, “Evolution of a colloidal critical state in an optical pinning potential landscape,” Physical Review B 66, 024504 (2002).
    [Crossref]
  6. P. M. Hansen, J. K. Dreyer, J. Ferkinghoff-Borg, and L. Oddershede “Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories,”, Journal of Colloid and Interface Science,  287561–571 (2005).
    [Crossref] [PubMed]
  7. V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
    [Crossref] [PubMed]
  8. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “The mechanical equivalence of the spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [Crossref] [PubMed]
  9. A. Ashkin and J.M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 1871073–1075 (1975).
    [Crossref] [PubMed]
  10. A. Biswas, H. Lati, R. L. Armstrong, and R.G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
    [Crossref] [PubMed]
  11. R. Thurn and W. Kiefer, “Raman microsampling technique applying optical levitation by radiation pressure,” Appl. Spectrosc. 38, 78–83 (1984).
    [Crossref]
  12. R. Omori, T. Kobayashi, and A. Suzuki, “Observation of a single beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22, 816–818 (1997).
    [Crossref] [PubMed]
  13. N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
    [Crossref]
  14. M.D. King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
    [Crossref] [PubMed]
  15. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
    [Crossref]
  16. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani “Optical particle trapping with computer generated holograms written on a liquid crystal display,” Opt. Lett. 24, 608–610 (1999).
    [Crossref]
  17. J. A. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Trapping,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  18. J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
    [Crossref] [PubMed]
  19. K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
    [Crossref] [PubMed]
  20. C. Creely, G. Volpe, M. Soler, and D. Petrov, “Raman imaging of floating cells,” Opt. Express 13, 6105–6110 (2005).
    [Crossref] [PubMed]
  21. Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13, 5434–5439 (2005).
    [Crossref] [PubMed]
  22. V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor and Francis, London, 1997).
  23. J. H. Dennis, C. A. Pieron, and K. Asai, “Aerosol Output and Size from Omron NE-U22 nebulizer,” in Proceedings of the 14th International Congress International Society for Aerosols in Medicines, Baltimore June 14–18 2003. Journal of Aerosol Medicine 16:2 213, 2003.
  24. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: Air Pollution to Climate Change (John Wiley and Sons Inc., 1997).
  25. Laura Mitchem, Particle Dynamics Group, School of Chemistry, University of Bristol, Bristol, BS8 1TS (personal communication, 2006).
  26. M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
    [Crossref] [PubMed]
  27. P. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13, 3583–3593 (2005).
    [Crossref] [PubMed]
  28. K. Davitt, Y. -K. Song, W. Patterson, A. Nurmikko, M. Gherasimova, J. Han, Y. -L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13, 9548–9555 (2005).
    [Crossref] [PubMed]
  29. N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, “Biological warfare and bioterrorism,” BMJ 324, 336–339 (2002).
    [Crossref] [PubMed]
  30. E. F. Mikhailov, S. S. Vlasenko, Lutz Krämer, and Reinhard Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aero. Sci. 32, 697–711 (2001).
    [Crossref]
  31. P.F. Smith, “Direct detection of weakly interacting massive particles using non-cryogenic techniques,” Phil. Trans. R. Soc. A 361, 2591–2606 (2003).
    [Crossref] [PubMed]

2006 (1)

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

2005 (8)

P. M. Hansen, J. K. Dreyer, J. Ferkinghoff-Borg, and L. Oddershede “Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories,”, Journal of Colloid and Interface Science,  287561–571 (2005).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

P. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13, 3583–3593 (2005).
[Crossref] [PubMed]

Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13, 5434–5439 (2005).
[Crossref] [PubMed]

M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[Crossref] [PubMed]

C. Creely, G. Volpe, M. Soler, and D. Petrov, “Raman imaging of floating cells,” Opt. Express 13, 6105–6110 (2005).
[Crossref] [PubMed]

K. Davitt, Y. -K. Song, W. Patterson, A. Nurmikko, M. Gherasimova, J. Han, Y. -L. Pan, and R. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13, 9548–9555 (2005).
[Crossref] [PubMed]

2004 (3)

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
[Crossref] [PubMed]

M.D. King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref] [PubMed]

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

2003 (3)

P.F. Smith, “Direct detection of weakly interacting massive particles using non-cryogenic techniques,” Phil. Trans. R. Soc. A 361, 2591–2606 (2003).
[Crossref] [PubMed]

N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
[Crossref]

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

2002 (3)

P. T. Korda, G. C. Spalding, and D. G. Grier, “Evolution of a colloidal critical state in an optical pinning potential landscape,” Physical Review B 66, 024504 (2002).
[Crossref]

J. A. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Trapping,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, “Biological warfare and bioterrorism,” BMJ 324, 336–339 (2002).
[Crossref] [PubMed]

2001 (1)

E. F. Mikhailov, S. S. Vlasenko, Lutz Krämer, and Reinhard Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aero. Sci. 32, 697–711 (2001).
[Crossref]

1999 (1)

1997 (2)

1989 (1)

A. Biswas, H. Lati, R. L. Armstrong, and R.G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[Crossref] [PubMed]

1986 (1)

1984 (1)

1975 (1)

A. Ashkin and J.M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 1871073–1075 (1975).
[Crossref] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Allen, L.

Armstrong, R. L.

A. Biswas, H. Lati, R. L. Armstrong, and R.G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[Crossref] [PubMed]

Asai, K.

J. H. Dennis, C. A. Pieron, and K. Asai, “Aerosol Output and Size from Omron NE-U22 nebulizer,” in Proceedings of the 14th International Congress International Society for Aerosols in Medicines, Baltimore June 14–18 2003. Journal of Aerosol Medicine 16:2 213, 2003.

Ashkin, A.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkhom, and S. Chu, “Observation of a single beam gradient force trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin and J.M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 1871073–1075 (1975).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

Barrington, S. J.

Baxter, K. L.

Beeching, N. J.

N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, “Biological warfare and bioterrorism,” BMJ 324, 336–339 (2002).
[Crossref] [PubMed]

Beran, R. K.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Biswas, A.

A. Biswas, H. Lati, R. L. Armstrong, and R.G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[Crossref] [PubMed]

Bjorkhom, J. E.

Block, S. M.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Bustamante, C.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Chang, R.

Cheng, W.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Chu, S.

Creely, C.

Curtis, J. A.

J. A. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Trapping,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dance, D. A. B.

N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, “Biological warfare and bioterrorism,” BMJ 324, 336–339 (2002).
[Crossref] [PubMed]

Davitt, K.

Dennis, J. H.

J. H. Dennis, C. A. Pieron, and K. Asai, “Aerosol Output and Size from Omron NE-U22 nebulizer,” in Proceedings of the 14th International Congress International Society for Aerosols in Medicines, Baltimore June 14–18 2003. Journal of Aerosol Medicine 16:2 213, 2003.

Dholakia, K.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “The mechanical equivalence of the spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Doskolovich, L.

V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor and Francis, London, 1997).

Dreyer, J. K.

P. M. Hansen, J. K. Dreyer, J. Ferkinghoff-Borg, and L. Oddershede “Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories,”, Journal of Colloid and Interface Science,  287561–571 (2005).
[Crossref] [PubMed]

Dultz, W.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Dumont, S.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Dziedzic, J. M.

Dziedzic, J.M.

A. Ashkin and J.M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 1871073–1075 (1975).
[Crossref] [PubMed]

Enger, J.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
[Crossref] [PubMed]

Ferkinghoff-Borg, J.

P. M. Hansen, J. K. Dreyer, J. Ferkinghoff-Borg, and L. Oddershede “Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories,”, Journal of Colloid and Interface Science,  287561–571 (2005).
[Crossref] [PubMed]

Foot, E. V.

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Gherasimova, M.

Goksor, M.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
[Crossref] [PubMed]

Goksör, M.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

Greenleaf, W. J.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Grier, D.

Grier, D. G.

Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13, 5434–5439 (2005).
[Crossref] [PubMed]

P. T. Korda, G. C. Spalding, and D. G. Grier, “Evolution of a colloidal critical state in an optical pinning potential landscape,” Physical Review B 66, 024504 (2002).
[Crossref]

J. A. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Trapping,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Hagberg, P.

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
[Crossref] [PubMed]

Haist, T.

Han, J.

Hansen, P. M.

P. M. Hansen, J. K. Dreyer, J. Ferkinghoff-Borg, and L. Oddershede “Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories,”, Journal of Colloid and Interface Science,  287561–571 (2005).
[Crossref] [PubMed]

Hanstorp, D.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
[Crossref] [PubMed]

Hayata, E.

N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
[Crossref]

Hirst, E.

Hopkins, R. J.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Käll, M.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

Kaye, P.

Kiefer, W.

King, M.D.

M.D. King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref] [PubMed]

Kobayashi, T.

Kohira, M.I.

N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
[Crossref]

Korda, P. T.

P. T. Korda, G. C. Spalding, and D. G. Grier, “Evolution of a colloidal critical state in an optical pinning potential landscape,” Physical Review B 66, 024504 (2002).
[Crossref]

Koss, B. A.

J. A. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Trapping,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Kotlyar, V.

V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor and Francis, London, 1997).

Krämer, Lutz

E. F. Mikhailov, S. S. Vlasenko, Lutz Krämer, and Reinhard Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aero. Sci. 32, 697–711 (2001).
[Crossref]

Ladavac, K.

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Lati, H.

A. Biswas, H. Lati, R. L. Armstrong, and R.G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[Crossref] [PubMed]

Lee, S. -H.

Logg, K.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

Magome, N.

N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
[Crossref]

McGloin, D.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Mikhailov, E. F.

E. F. Mikhailov, S. S. Vlasenko, Lutz Krämer, and Reinhard Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aero. Sci. 32, 697–711 (2001).
[Crossref]

Miller, A. R. O.

N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, “Biological warfare and bioterrorism,” BMJ 324, 336–339 (2002).
[Crossref] [PubMed]

Mitchem, L.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Mitchem, Laura

Laura Mitchem, Particle Dynamics Group, School of Chemistry, University of Bristol, Bristol, BS8 1TS (personal communication, 2006).

Mukai, S.

N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
[Crossref]

Niessner, Reinhard

E. F. Mikhailov, S. S. Vlasenko, Lutz Krämer, and Reinhard Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aero. Sci. 32, 697–711 (2001).
[Crossref]

Nurmikko, A.

Oddershede, L.

P. M. Hansen, J. K. Dreyer, J. Ferkinghoff-Borg, and L. Oddershede “Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories,”, Journal of Colloid and Interface Science,  287561–571 (2005).
[Crossref] [PubMed]

Omori, R.

Padgett, M. J.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “The mechanical equivalence of the spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Pan, Y. -L.

Pandis, S. N.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: Air Pollution to Climate Change (John Wiley and Sons Inc., 1997).

Patterson, W.

Petrov, D.

Pieron, C. A.

J. H. Dennis, C. A. Pieron, and K. Asai, “Aerosol Output and Size from Omron NE-U22 nebulizer,” in Proceedings of the 14th International Congress International Society for Aerosols in Medicines, Baltimore June 14–18 2003. Journal of Aerosol Medicine 16:2 213, 2003.

Pinnick, R.G.

A. Biswas, H. Lati, R. L. Armstrong, and R.G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[Crossref] [PubMed]

Polin, M.

Pyle, A. M.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Ramser, K.

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
[Crossref] [PubMed]

Reicherter, M.

Reid, J. P.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Roichman, Y.

Schmitzer, H.

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

Seinfeld, J. H.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: Air Pollution to Climate Change (John Wiley and Sons Inc., 1997).

Serebrov, V.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Simpson, N. B.

Smith, P.F.

P.F. Smith, “Direct detection of weakly interacting massive particles using non-cryogenic techniques,” Phil. Trans. R. Soc. A 361, 2591–2606 (2003).
[Crossref] [PubMed]

Soifer, V.

V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor and Francis, London, 1997).

Soler, M.

Song, Y. -K.

Spalding, G. C.

P. T. Korda, G. C. Spalding, and D. G. Grier, “Evolution of a colloidal critical state in an optical pinning potential landscape,” Physical Review B 66, 024504 (2002).
[Crossref]

Spencer, R. C.

N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, “Biological warfare and bioterrorism,” BMJ 324, 336–339 (2002).
[Crossref] [PubMed]

Stanley, W. R.

Suzuki, A.

Thompson, K.C.

M.D. King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref] [PubMed]

Thurn, R.

Tinoco, I.

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Tiziani, H. J.

Vlasenko, S. S.

E. F. Mikhailov, S. S. Vlasenko, Lutz Krämer, and Reinhard Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aero. Sci. 32, 697–711 (2001).
[Crossref]

Volpe, G.

Wagemann, E. U.

Ward, A. D.

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Ward, A.D.

M.D. King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref] [PubMed]

Yoshikawa, K.

N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
[Crossref]

Appl. Spectrosc. (1)

BMJ (1)

N. J. Beeching, D. A. B. Dance, A. R. O. Miller, and R. C. Spencer, “Biological warfare and bioterrorism,” BMJ 324, 336–339 (2002).
[Crossref] [PubMed]

J. Aero. Sci. (1)

E. F. Mikhailov, S. S. Vlasenko, Lutz Krämer, and Reinhard Niessner, “Interaction of soot aerosol particles with water droplets: influence of surface hydrophilicity,” J. Aero. Sci. 32, 697–711 (2001).
[Crossref]

J. Am. Chem. Soc. (1)

M.D. King, K.C. Thompson, and A.D. Ward, “Laser Tweezers Raman Study of Optically Trapped Aerosol Droplets of Seawater and Oleic Acid Reacting with Ozone: Implications for Cloud-Droplet Properties,” J. Am. Chem. Soc. 126, 16710–16711 (2004).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

N. Magome, M.I. Kohira, E. Hayata, S. Mukai, and K. Yoshikawa, “Optical Trapping of a Growing Water Droplet in Air” J. Phys. Chem. B 107, 3988–3990 (2003).
[Crossref]

Journal of Colloid and Interface Science (1)

P. M. Hansen, J. K. Dreyer, J. Ferkinghoff-Borg, and L. Oddershede “Novel optical and statistical methods reveal colloid-wall interactions inconsistent with DLVO and Lifshitz theories,”, Journal of Colloid and Interface Science,  287561–571 (2005).
[Crossref] [PubMed]

Lab on a Chip (2)

J. Enger, M. Goksor, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system,” Lab on a Chip 4, 196–200 (2004).
[Crossref] [PubMed]

K. Ramser, J. Enger, M. Goksör, D. Hanstorp, K. Logg, and M. Käll, “A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells,” Lab on a Chip 5, 431–436 (2005).
[Crossref] [PubMed]

Nature (2)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by RNA polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

S. Dumont, W. Cheng, V. Serebrov, R. K. Beran, I. Tinoco, A. M. Pyle, and C. Bustamante “RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP,” Nature 439, 105–108 (2006).
[Crossref] [PubMed]

Opt. Commun. (1)

J. A. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Trapping,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phil. Trans. R. Soc. A (1)

P.F. Smith, “Direct detection of weakly interacting massive particles using non-cryogenic techniques,” Phil. Trans. R. Soc. A 361, 2591–2606 (2003).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004).
[Crossref]

Phys. Rev. A (1)

A. Biswas, H. Lati, R. L. Armstrong, and R.G. Pinnick, “Double-resonance stimulated Raman scattering from optically levitated glycerol droplets,” Phys. Rev. A 40, 7413–7416 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

V. Garcés-Chávez, D. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, “Observation of the transfer of the local angular momentum density of a multi-ringed light beam to an optically trapped particle,” Phys. Rev. Lett. 91, 093602 (2003).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156 (1970).
[Crossref]

Physical Review B (1)

P. T. Korda, G. C. Spalding, and D. G. Grier, “Evolution of a colloidal critical state in an optical pinning potential landscape,” Physical Review B 66, 024504 (2002).
[Crossref]

Science (1)

A. Ashkin and J.M. Dziedzic, “Optical levitation of liquid drops by radiation pressure,” Science 1871073–1075 (1975).
[Crossref] [PubMed]

Other (4)

V. Soifer, V. Kotlyar, and L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor and Francis, London, 1997).

J. H. Dennis, C. A. Pieron, and K. Asai, “Aerosol Output and Size from Omron NE-U22 nebulizer,” in Proceedings of the 14th International Congress International Society for Aerosols in Medicines, Baltimore June 14–18 2003. Journal of Aerosol Medicine 16:2 213, 2003.

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: Air Pollution to Climate Change (John Wiley and Sons Inc., 1997).

Laura Mitchem, Particle Dynamics Group, School of Chemistry, University of Bristol, Bristol, BS8 1TS (personal communication, 2006).

Supplementary Material (1)

» Media 1: MOV (2042 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. W is a half-wave plate. Lenses L1 and L2, with focal lengths 75mm and 750mm respectively act to expand the laser source. Lenses L3, L4, L5, and L6 form the two 4f imaging systems with focal lengths 400mm, 250mm, 200mm and 100mm respectively. Finally lens L7, with a focal length of 200mm, is the tube lens used in conjuction with the microscope objective, OBJ, which focuses the desired trapping pattern into the trapping chamber containing a water soaked tissue. Mirrors M1 and M2 are broadband dielectric mirrors. Mirror DM is a green dichroic mirror and MM is a metallic mirror for imaging into the camera CCD. A beam block, BB, is used to remove the SLM’s zeroth diffraction order. The aerosols are produced using an ultrasonic nebuliser, NEB.

Fig. 2.
Fig. 2.

Top left image shows the backscattered light from the bottom of the microscope slide revealing the holographic trapping pattern. The remaining images show the resulting trapped water droplets after multiple uses of the nebuliser in attempts to fill all trap sites. As indicated in the text, although we have a relatively simple trapping pattern it is hard to fill all the sites.

Fig. 3.
Fig. 3.

A series of microscope images demonstrating the z control of water droplets from -10 to +10 microns. The white bar indicates a scale of 5 microns.

Fig. 4.
Fig. 4.

Graph showing the variation of droplet size as a function of power. The vertical error has standard error bars increasing in size with power indicating that not only can higher powers trap, on average, larger droplets but also a greater distribution of sizes. The horizontal error bars mostly arise from the non perfect intensity uniformity of the trapping sites. However, the graph cannot convey the difficulty of achieving initial trapping at low powers.

Fig. 5.
Fig. 5.

Movie showing control and coagulation of multiple water droplets. [Media 1]

Fig. 6.
Fig. 6.

Theoretical curve showing particle displacement after 16ms (SLM response time) due to Brownian diffusion.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x 2 = 2 kT C c t 3 πμ D p ,

Metrics