Abstract

A liquid crystal droplet lens driven by the dielectrophoresis (DEP) force was demonstrated. The liquid crystal droplet lens was deformed by the DEP forces under non-uniform AC electric fields. Focal length, hysteresis and electrode design were studied. The focal length varied from 1.6mm to 2.6mm in the range of 0-200V at 1 kHz for electrode spacing of 50μm; that is, the tuning ratio of the focal length was about 60% in maximum. The hysteresis of contact angle was found to be less than 3° and it vanished after 1 minute at the rest state. As the electrode spacing over 200μm, the tuning ratios of the focal length dropped below 5%. The liquid crystal droplet lens that had numerical aperture of about 0.5 consumed power of about 0.1mW. Its response time was measured to be about 220ms.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dielectrically actuated liquid lens

Chih-Cheng Cheng and J. Andrew Yeh
Opt. Express 15(12) 7140-7145 (2007)

Focus-tunable low-power electrowetting lenses with thin parylene films

Alexander M. Watson, Kevin Dease, Soraya Terrab, Christopher Roath, Juliet T. Gopinath, and Victor M. Bright
Appl. Opt. 54(20) 6224-6229 (2015)

Electrically tunable wettability of liquid crystal/polymer composite films

Yi-Hsin Lin, Hongwen Ren, Yung-Hsun Wu, Shin-Tson Wu, Yue Zhao, Jiyu Fang, and Hung-Chun Lin
Opt. Express 16(22) 17591-17598 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Nose, S Masuda, and S Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643 (1992)
    [Crossref]
  2. Y. Choi, J.-H. Park, J.-H Kim., and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Mater. 21, 643 (2003)
    [Crossref]
  3. H Ren, Y H Fan, and S T Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608 (2004).
    [Crossref] [PubMed]
  4. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,“ Eur. Phys. J. E 3, 159 (2000).
    [Crossref]
  5. S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL),” Transducers Eurosensors, Germany, 10-14 June, (2001)
  6. N. Chronis, G. L. Liu, K-H Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370 (2003)
    [Crossref] [PubMed]
  7. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665 (2004)
    [Crossref]
  8. F. Mugele and J-C baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705 (2005)
    [Crossref]
  9. E. Seyrat and R. A. Hayes, “Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting”, J. Appl. Phys. 90, 1383 (2001)
    [Crossref]
  10. T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation“, J. Appl. Phys. 89, 1441 (2001)
    [Crossref]
  11. T. B. Jones, “Liquid dielectrophoresis on the microscale“, J. Electrostatics 51–52, 290 (2001)
    [Crossref]
  12. S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL)”, Transducers Eurosensors, Germany, 10-14 June, (2001)

2005 (1)

F. Mugele and J-C baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705 (2005)
[Crossref]

2004 (2)

H Ren, Y H Fan, and S T Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608 (2004).
[Crossref] [PubMed]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665 (2004)
[Crossref]

2003 (2)

N. Chronis, G. L. Liu, K-H Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370 (2003)
[Crossref] [PubMed]

Y. Choi, J.-H. Park, J.-H Kim., and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Mater. 21, 643 (2003)
[Crossref]

2001 (4)

E. Seyrat and R. A. Hayes, “Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting”, J. Appl. Phys. 90, 1383 (2001)
[Crossref]

T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation“, J. Appl. Phys. 89, 1441 (2001)
[Crossref]

T. B. Jones, “Liquid dielectrophoresis on the microscale“, J. Electrostatics 51–52, 290 (2001)
[Crossref]

S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL)”, Transducers Eurosensors, Germany, 10-14 June, (2001)

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,“ Eur. Phys. J. E 3, 159 (2000).
[Crossref]

1992 (1)

T. Nose, S Masuda, and S Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643 (1992)
[Crossref]

Agarwal, M.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665 (2004)
[Crossref]

baret, J-C

F. Mugele and J-C baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705 (2005)
[Crossref]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,“ Eur. Phys. J. E 3, 159 (2000).
[Crossref]

Choi, Y.

Y. Choi, J.-H. Park, J.-H Kim., and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Mater. 21, 643 (2003)
[Crossref]

Chronis, N.

Coane, P.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665 (2004)
[Crossref]

Fan, Y H

Feldman, M. J.

T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation“, J. Appl. Phys. 89, 1441 (2001)
[Crossref]

Gunasekaran, R. A.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665 (2004)
[Crossref]

Gunji, M.

T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation“, J. Appl. Phys. 89, 1441 (2001)
[Crossref]

Hayes, R. A.

E. Seyrat and R. A. Hayes, “Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting”, J. Appl. Phys. 90, 1383 (2001)
[Crossref]

Jeong, K-H

Jones, T. B.

T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation“, J. Appl. Phys. 89, 1441 (2001)
[Crossref]

T. B. Jones, “Liquid dielectrophoresis on the microscale“, J. Electrostatics 51–52, 290 (2001)
[Crossref]

Kim., J.-H

Y. Choi, J.-H. Park, J.-H Kim., and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Mater. 21, 643 (2003)
[Crossref]

Kwon, S.

S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL)”, Transducers Eurosensors, Germany, 10-14 June, (2001)

S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL),” Transducers Eurosensors, Germany, 10-14 June, (2001)

Lee, L. P.

N. Chronis, G. L. Liu, K-H Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370 (2003)
[Crossref] [PubMed]

S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL)”, Transducers Eurosensors, Germany, 10-14 June, (2001)

S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL),” Transducers Eurosensors, Germany, 10-14 June, (2001)

Lee, S.-D.

Y. Choi, J.-H. Park, J.-H Kim., and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Mater. 21, 643 (2003)
[Crossref]

Liu, G. L.

Masuda, S

T. Nose, S Masuda, and S Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643 (1992)
[Crossref]

Mugele, F.

F. Mugele and J-C baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705 (2005)
[Crossref]

Nose, T.

T. Nose, S Masuda, and S Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643 (1992)
[Crossref]

Park, J.-H.

Y. Choi, J.-H. Park, J.-H Kim., and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Mater. 21, 643 (2003)
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,“ Eur. Phys. J. E 3, 159 (2000).
[Crossref]

Ren, H

Sato, S

T. Nose, S Masuda, and S Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643 (1992)
[Crossref]

Seyrat, E.

E. Seyrat and R. A. Hayes, “Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting”, J. Appl. Phys. 90, 1383 (2001)
[Crossref]

Varahramyan, K.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665 (2004)
[Crossref]

Washizu, M.

T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation“, J. Appl. Phys. 89, 1441 (2001)
[Crossref]

Wu, S T

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,“ Eur. Phys. J. E 3, 159 (2000).
[Crossref]

J. Appl. Phys. (2)

E. Seyrat and R. A. Hayes, “Amorphous fluoropolymers as insulators for reversible low-voltage electrowetting”, J. Appl. Phys. 90, 1383 (2001)
[Crossref]

T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation“, J. Appl. Phys. 89, 1441 (2001)
[Crossref]

J. Electrostatics (1)

T. B. Jones, “Liquid dielectrophoresis on the microscale“, J. Electrostatics 51–52, 290 (2001)
[Crossref]

J. Micromech. Microeng. (1)

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665 (2004)
[Crossref]

J. Phys.: Condens. Matter (1)

F. Mugele and J-C baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705 (2005)
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Nose, S Masuda, and S Sato, “A liquid crystal microlens with hole-patterned electrodes on both substrates,” Jpn. J. Appl. Phys. 31, 1643 (1992)
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optical Mater. (1)

Y. Choi, J.-H. Park, J.-H Kim., and S.-D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Mater. 21, 643 (2003)
[Crossref]

Other (2)

S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL),” Transducers Eurosensors, Germany, 10-14 June, (2001)

S. Kwon and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL)”, Transducers Eurosensors, Germany, 10-14 June, (2001)

Supplementary Material (2)

» Media 1: MOV (9386 KB)     
» Media 2: MOV (2179 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic view of deformation mechanism of a deformable liquid crystal droplet lens (not to scale) (b) Design of concentric ITO electrode of 50μm in width and 50μm in spacing.

Fig. 2.
Fig. 2.

The lens images were observed under crossed polarizers. (a) nematic phase at 20°C; (b) isotropic phase at 30°C.

Fig. 3.
Fig. 3.

The transmission spectrum of liquid crystal of the thickness of 700μm.

Fig. 4
Fig. 4

(a) Tuning focal length of a liquid crystal droplet lens changes under different applied voltages. The temperature was 30°C. (b) (2.12MB) Movie of the focal length tuning of the liquid crystal droplet lens. (9.16 MB version)

Fig. 5.
Fig. 5.

Experimental profiles of a liquid crystal droplet lens with respect to increasing applied voltage at 1 kHz.

Fig. 6.
Fig. 6.

Experimental results of effective focal length and contact angle versus applied voltages. Both the width and spacing of electrodes were 50μm.

Fig. 7.
Fig. 7.

Δf/f0 and Δθ decrease with wider electrode spacing. The electrode width is 50μm. (Δf/f0) is the tuning ratio of focal length, f0 is the focal length of liquid crystal droplet lens at 0V. Δθ is the maximum of change in contact angle. Both Δf/f0 and Δθ were measured in the range of 0-200V at 1 kHz.

Tables (1)

Tables Icon

Table 1. Performance comparison of liquid crystal droplet lens and water-based liquid lens

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = 1 2 ε 0 ( ε / / 1 ) E 2

Metrics