Abstract

A retinal imaging instrument that integrates adaptive optics (AO), scanning laser ophthalmoscopy (SLO), and retinal tracking components was built and tested. The system uses a Hartmann-Shack wave-front sensor (HS-WS) and MEMS-based deformable mirror (DM) for AO-correction of high-resolution, confocal SLO images. The system includes a wide-field line-scanning laser ophthalmoscope for easy orientation of the high-magnification SLO raster. The AO system corrected ocular aberrations to <0.1 μm RMS wave-front error. An active retinal tracking with custom processing board sensed and corrected eye motion with a bandwidth exceeding 1 kHz. We demonstrate tracking accuracy down to 6 μm RMS for some subjects (typically performance: 10–15 μm RMS). The system has the potential to become an important tool to clinicians and researchers for vision studies and the early detection and treatment of retinal diseases.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Image stabilization for scanning laser ophthalmoscopy," Opt. Express 10, 1542-1549 (2002).
    [PubMed]
  2. D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. E. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Express 13, 7937-7947 (2005).
    [CrossRef] [PubMed]
  3. R. D. Ferguson, D. X. Hammer, A. E. Elsner, R. H. Webb, S. A. Burns, and J. J. Weiter, "Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope," Opt. Express 12, 5198-5208 (2004).
    [CrossRef] [PubMed]
  4. Hiroshi Ishikawa, Michelle L. Gabriele, Gadi Wollstein, R. Daniel Ferguson, Daniel X. Hammer, L. Adelina Paunescu, Siobahn A. Beaton, Joel S. Schuman, "Retinal Nerve Fiber Layer Assessment Using Optical Coherence Tomography (OCT) with Active Optic Nerve Head Tracking," Inv. Ophthalmol. Vis. Sci. 47,964-967 (2006).
    [CrossRef]
  5. J. Liang, D. Williams, and D. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  6. A. Roorda, F. Romero-Borja, W. Donnelly, III, H. Queener, T. Hebert, and M. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  7. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, G. D. Noojin, D. J. Stolarski, H. M. Hodnett, M. L. Imholte, S. S. Kumru, M. N. McCall, C. A. Toth, B. A. Rockwell, "Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope" paper 6138-37, in Ophthalmic Technolgies XVI, Eds: Manns, Soderberg, and Ho. (2006).
  8. D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. (Special Issue for A. J. Welch), in press.
    [PubMed]
  9. R. H. Webb, G. W. Hughes, and F. C. Delori, "Confocal scanning laser ophthalmoscope," Appl. Opt. 26, 1492-1497 (1987).
    [CrossRef] [PubMed]
  10. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R Webb, "Standards for reporting the optical aberrations of eyes," J. Refractive Surg. 18, S652-S660 (2002).
  11. C. A. Curcio and K.R. Sloan, "Packing geometry of human cone photoreceptors - variation with eccentricity and evidence for local anisotropy," Visual Neuroscience 9, 169-180 (1992).
    [CrossRef] [PubMed]
  12. C. Vogel, D. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006).
    [CrossRef] [PubMed]
  13. C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
    [CrossRef]

2006

Hiroshi Ishikawa, Michelle L. Gabriele, Gadi Wollstein, R. Daniel Ferguson, Daniel X. Hammer, L. Adelina Paunescu, Siobahn A. Beaton, Joel S. Schuman, "Retinal Nerve Fiber Layer Assessment Using Optical Coherence Tomography (OCT) with Active Optic Nerve Head Tracking," Inv. Ophthalmol. Vis. Sci. 47,964-967 (2006).
[CrossRef]

C. Vogel, D. Arathorn, A. Roorda, and A. Parker, "Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy," Opt. Express 14, 487-497 (2006).
[CrossRef] [PubMed]

2005

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

D. X. Hammer, R. D. Ferguson, N. V. Iftimia, T. E. Ustun, G. Wollstein, H. Ishikawa, M. L. Gabriele, W. D. Dilworth, L. Kagemann, and J. S. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Express 13, 7937-7947 (2005).
[CrossRef] [PubMed]

2004

2002

1997

1992

C. A. Curcio and K.R. Sloan, "Packing geometry of human cone photoreceptors - variation with eccentricity and evidence for local anisotropy," Visual Neuroscience 9, 169-180 (1992).
[CrossRef] [PubMed]

1987

Alt, C.

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R Webb, "Standards for reporting the optical aberrations of eyes," J. Refractive Surg. 18, S652-S660 (2002).

Arathorn, D.

Brinkman, R.

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

Burns, S. A.

Campbell, M.

Curcio, C. A.

C. A. Curcio and K.R. Sloan, "Packing geometry of human cone photoreceptors - variation with eccentricity and evidence for local anisotropy," Visual Neuroscience 9, 169-180 (1992).
[CrossRef] [PubMed]

Delori, F. C.

Dilworth, W. D.

Donnelly, W.

Elsner, A. E.

Ferguson, R. D.

Framme, C.

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

Gabriele, M. L.

Hammer, D. X.

Hebert, T.

Hughes, G. W.

Iftimia, N. V.

Ishikawa, H.

Kagemann, L.

Lee, H.

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

Liang, J.

Lin, C. P.

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

Magill, J. C.

Miller, D.

Parker, A.

Queener, H.

Romero-Borja, F.

Roorda, A.

Schnell, S.

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

Schuman, J. S.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R Webb, "Standards for reporting the optical aberrations of eyes," J. Refractive Surg. 18, S652-S660 (2002).

Sloan, K.R.

C. A. Curcio and K.R. Sloan, "Packing geometry of human cone photoreceptors - variation with eccentricity and evidence for local anisotropy," Visual Neuroscience 9, 169-180 (1992).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R Webb, "Standards for reporting the optical aberrations of eyes," J. Refractive Surg. 18, S652-S660 (2002).

Ustun, T. E.

Vogel, C.

Webb, R

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R Webb, "Standards for reporting the optical aberrations of eyes," J. Refractive Surg. 18, S652-S660 (2002).

Webb, R. H.

Weiter, J. J.

White, M. A.

Williams, D.

Wollstein, G.

Appl. Opt.

Inv. Ophthalmol. Vis. Sci.

Hiroshi Ishikawa, Michelle L. Gabriele, Gadi Wollstein, R. Daniel Ferguson, Daniel X. Hammer, L. Adelina Paunescu, Siobahn A. Beaton, Joel S. Schuman, "Retinal Nerve Fiber Layer Assessment Using Optical Coherence Tomography (OCT) with Active Optic Nerve Head Tracking," Inv. Ophthalmol. Vis. Sci. 47,964-967 (2006).
[CrossRef]

J. Biomed. Optics

C. Alt, C. Framme, S. Schnell, H. Lee, R. Brinkman, and C. P. Lin, "Selective targeting of retinal pigment epithelium using an acousto-optic laser scanner," J. Biomed. Optics 10, 064014 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Refractive Surg.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R Webb, "Standards for reporting the optical aberrations of eyes," J. Refractive Surg. 18, S652-S660 (2002).

Opt. Express

Visual Neuroscience

C. A. Curcio and K.R. Sloan, "Packing geometry of human cone photoreceptors - variation with eccentricity and evidence for local anisotropy," Visual Neuroscience 9, 169-180 (1992).
[CrossRef] [PubMed]

Other

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, G. D. Noojin, D. J. Stolarski, H. M. Hodnett, M. L. Imholte, S. S. Kumru, M. N. McCall, C. A. Toth, B. A. Rockwell, "Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope" paper 6138-37, in Ophthalmic Technolgies XVI, Eds: Manns, Soderberg, and Ho. (2006).

D. X. Hammer, R. D. Ferguson, T. E. Ustun, C. E. Bigelow, N. V. Iftimia, R. H. Webb, "Line-scanning laser ophthalmoscope," J. Biomed. Opt. (Special Issue for A. J. Welch), in press.
[PubMed]

Supplementary Material (5)

» Media 1: AVI (1790 KB)     
» Media 2: AVI (2746 KB)     
» Media 3: AVI (1911 KB)     
» Media 4: AVI (2894 KB)     
» Media 5: AVI (3744 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

TAOSLO block diagram. Tracker components are shown in red, SLO components are shown in light blue, AO components are shown in green, and the external therapeutic/stimulus port is shown in yellow.

Fig. 2.
Fig. 2.

TAOSLO optical layout. (a) Ocular interface which includes TSLO and front lens relay, (b,c) View of front and rear of vertical plate on which optics are mounted. Entire plate is mounted on a stage to control focus between front lens relay. Positions of conjugates to retina, pupil, and the center-of-rotation of the eye are indicated (with lower case p, c, r). Dx: dichroic beamsplitters, Ox: custom objectives, OL: ophthalmoscopic lens, TG: master tracking galvanometers, RS: resonant scanners, SA: split aperture, CL: cylindrical lens, LD: laser diode, SLD: superluminescent diode, APD: avalanche photodiode, LAD: linear array detector, TM: turning mirrors, SMx: spherical mirrors, SGh and SGv: slave galvanometers, Gv: SLO raster galvanometer, RSh: SLO raster scanner, OG: offset galvanometer, PBS: pellicle beamsplitter (92/8), DM: deformable mirror (on stage for additional focus adjust), TL: therapeutic laser port (with independent focus), BS: beamsplitter (50/50), LA: lenslet array.

Fig. 3.
Fig. 3.

Photograph of TAOSLO during human subject testing.

Fig. 4.
Fig. 4.

Summary of AO performance. (a) SLO image acquired with AO correction. (b) Wave-front error map averaged over all video frames during AO correction (~5 sec.) for 4.5 μm pupil. (c) SLO image acquired without AO correction. (d) Wave-front error map averaged over all video frames when AO was off (~4 sec.). (e) RMS wave-front error by Zernike order averaged for all video frames with and without AO correction. (f) Temporal dynamics of RMS wave-front error.

Fig. 5.
Fig. 5.

Master and slave mirror positions show good correspondence during a relatively long scan (~18 seconds). One saccade indicated by the arrow caused a large overshoot in the slave y position due to the limiting of the slave PIS bandwidth.

Fig. 6.
Fig. 6.

(1.6 Mb) Video of retina with adaptive correction without tracking for a young, healthy subject with good fixation (7 sec.). The plot shows the position of the cone indicated by the yellow circle in the video.

Fig. 7.
Fig. 7.

(2.9 Mb) Video of retina with adaptive correction with tracking for the same subject as Fig. 6 (9 sec.). (a) The tracking mirror position, which represents the (uncorrected) eye position, is shown in red along with the cone position, which represents the corrected eye position, in blue and indicated in the video by the yellow circle. (b) The cone position is shown on a magnified scale.

Fig. 8.
Fig. 8.

(1.4 Mb) Video of simple software-assisted registration for the video shown in Fig. 7.

Fig. 9.
Fig. 9.

Summary of tracking and registration results. Composite images generated from co-added frames (blinks excluded) for (a) non-tracking (52 frames), (b) tracking (67 frames), and (c) software registration (67 frames) cases from the videos displayed in Figs. 6–8. Line profiles (d) through three cones labeled in (c) in a single unprocessed frame (28) and the composite image. Contrast values are shown below the curves.

Fig. 10.
Fig. 10.

(2.0 Mb) Video taken from wide-field LSLO during automatic macular montage acquisition. LSLO overlay shows position of tracking beam (oe-14-8-3354-i001), position of fixation target (oe-14-8-3354-i002), position of SLO raster (oe-14-8-3354-i003), scale, and track and AO on (oe-14-8-3354-i004) /off (oe-14-8-3354-i005) indicators.

Fig. 11.
Fig. 11.

(3.8 Mb) Video of AOSLO during automatic macular montage acquisition (different subject than Fig. 10).

Fig. 12.
Fig. 12.

Macular montage created from video shown in Fig. 11.

Metrics