Abstract

Channel drop filters with ring/disk resonators in a plasmon-polaritons metal are studied. It shows that light can be efficiently dropped. Results obtained by the finite difference time domain method are consistent with those from the coupled mode theory. It also shows, without considering the loss of the metal, that the quality factor for the channel drop system can be very high. The quality factor decreases significantly if we take into account the loss, which also leads to a weak drop efficiency.

© 2006 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus and Y. Lai, "Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE J. Quantum Electron. 28, 205-213 (1992).
    [CrossRef]
  2. C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
    [CrossRef]
  3. K. Oda, N. Tokato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991).
    [CrossRef]
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
    [CrossRef]
  5. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  6. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4.
  7. M. Qiu and B. Jaskorzynska, "A design of a channel drop filter in a two-dimentional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
    [CrossRef]
  8. S. Kim, J. Cai, J. Jiang, and G. P. Nordin, "New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures," Opt. Express 12, 2356-2364 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2356.
    [CrossRef]
  9. Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13, 2596-2604 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2596.
    [CrossRef]
  10. W. Rotman, "A study of single surface corrugated guides," Proc. IRE 39, 952-959 (1951).
    [CrossRef]
  11. R. A. Hurd, "The propagation of an electromagnetic wave along an infinite corrugated surface," Can. J. Phys. 32, 727-734 (1954).
  12. R. S. Elliott, "On the theory of corrugated plane surfaces," IRE Trans Antennas Propag- 2 pp. 71-81 (1954).
  13. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching surface plasmons with structured surfaces," Science 305, 847-848 (2004).
    [CrossRef]
  14. J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
    [CrossRef]
  15. R. M. Dickson and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
    [CrossRef]
  16. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
  17. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
    [CrossRef]
  18. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House INC, Norwood, 2000).
  19. S. Xiao, and M. Qiu, "Surface-mode microcavity," Appl. Phys. Lett. 87, 111102 (2005).
    [CrossRef]
  20. M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately," Microwave Opt. Technol. Lett. 45, 381-385 (2005).
    [CrossRef]
  21. B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-7 (1997).
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  23. E. Waks and J. Vuckovic, "Coupled mode theory for photonic crystal cavity-waveguide interaction," Opt. Express 13, 5064-5073 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5064.
    [CrossRef]
  24. M. P. Nezhad, K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072-4079 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4072.
    [CrossRef]

2005 (4)

2004 (3)

2003 (2)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

M. Qiu and B. Jaskorzynska, "A design of a channel drop filter in a two-dimentional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

2000 (1)

R. M. Dickson and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

1999 (2)

J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

1998 (3)

1997 (2)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-7 (1997).

1992 (1)

H. A. Haus and Y. Lai, "Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE J. Quantum Electron. 28, 205-213 (1992).
[CrossRef]

1991 (1)

K. Oda, N. Tokato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991).
[CrossRef]

1954 (2)

R. A. Hurd, "The propagation of an electromagnetic wave along an infinite corrugated surface," Can. J. Phys. 32, 727-734 (1954).

R. S. Elliott, "On the theory of corrugated plane surfaces," IRE Trans Antennas Propag- 2 pp. 71-81 (1954).

1951 (1)

W. Rotman, "A study of single surface corrugated guides," Proc. IRE 39, 952-959 (1951).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Aussenegg, F. R.

Cai, J.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-7 (1997).

Dereu, A.

J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Dickson, R. M.

R. M. Dickson and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

Elliott, R. S.

R. S. Elliott, "On the theory of corrugated plane surfaces," IRE Trans Antennas Propag- 2 pp. 71-81 (1954).

Fainman, Y.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

Girard, C.

J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Goudonnet, J. P.

J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

H. A. Haus and Y. Lai, "Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE J. Quantum Electron. 28, 205-213 (1992).
[CrossRef]

Hurd, R. A.

R. A. Hurd, "The propagation of an electromagnetic wave along an infinite corrugated surface," Can. J. Phys. 32, 727-734 (1954).

Jaskorzynska, B.

M. Qiu and B. Jaskorzynska, "A design of a channel drop filter in a two-dimentional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

Jiang, J.

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Kim, S.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Krenn, J. R.

J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).

Lai, Y.

H. A. Haus and Y. Lai, "Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE J. Quantum Electron. 28, 205-213 (1992).
[CrossRef]

Laine, J. P.

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-7 (1997).

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

Leitner, A.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, "Surface-roughness-induced contradirectional coupling in ring and disk resonators," Opt. Lett. 22, 4-7 (1997).

Lyon, L. A.

R. M. Dickson and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Nezhad, M. P.

Nordin, G. P.

Oda, K.

K. Oda, N. Tokato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

Qiu, M.

M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately," Microwave Opt. Technol. Lett. 45, 381-385 (2005).
[CrossRef]

Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13, 2596-2604 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2596.
[CrossRef]

S. Xiao, and M. Qiu, "Surface-mode microcavity," Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

M. Qiu and B. Jaskorzynska, "A design of a channel drop filter in a two-dimentional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Rotman, W.

W. Rotman, "A study of single surface corrugated guides," Proc. IRE 39, 952-959 (1951).
[CrossRef]

Tetz, K.

Toba, H.

K. Oda, N. Tokato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991).
[CrossRef]

Tokato, N.

K. Oda, N. Tokato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop filters in photonic crystals," Opt. Express 3, 4-11 (1998). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-1-4.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Villenueve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

Vuckovic, J.

Waks, E.

Weeber, J. C.

J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Xiao, S.

S. Xiao, and M. Qiu, "Surface-mode microcavity," Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

Zhang, Z.

Appl. Phys. Lett. (2)

S. Xiao, and M. Qiu, "Surface-mode microcavity," Appl. Phys. Lett. 87, 111102 (2005).
[CrossRef]

M. Qiu and B. Jaskorzynska, "A design of a channel drop filter in a two-dimentional triangular photonic crystal," Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

Can. J. Phys. (1)

R. A. Hurd, "The propagation of an electromagnetic wave along an infinite corrugated surface," Can. J. Phys. 32, 727-734 (1954).

IEEE J. Quantum Electron. (2)

H. A. Haus and Y. Lai, "Theory of cascaded quarter wave shifted distributed feedback resonators," IEEE J. Quantum Electron. 28, 205-213 (1992).
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villenueve, H. A. Haus, and J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE J. Quantum Electron. 35, 1322-1331 (1999).
[CrossRef]

IRE Trans Antennas Propag (1)

R. S. Elliott, "On the theory of corrugated plane surfaces," IRE Trans Antennas Propag- 2 pp. 71-81 (1954).

J. Lightwave Technol. (2)

K. Oda, N. Tokato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," J. Lightwave Technol. 9, 728-736 (1991).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997).
[CrossRef]

J. Phys. Chem. B (1)

R. M. Dickson and L. A. Lyon, "Unidirectional plasmon propagation in metallic nanowires," J. Phys. Chem. B 104, 6095-6098 (2000).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: Determining resonant frequencies and quality factors accurately," Microwave Opt. Technol. Lett. 45, 381-385 (2005).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

J. C. Weeber, A. Dereu, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Proc. IRE (1)

W. Rotman, "A study of single surface corrugated guides," Proc. IRE 39, 952-959 (1951).
[CrossRef]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching surface plasmons with structured surfaces," Science 305, 847-848 (2004).
[CrossRef]

Other (2)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House INC, Norwood, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics