Abstract

Planar waveguides in nonlinear optical crystals of Sn2P2S6 have been produced by He+ ion implantation. The effective indices of the waveguide have been determined and refractive index profiles have been evaluated for the indices along all three principal axes of the optical indicatrix. The depth of the induced optical barrier is ∆n 1 = -0.07, ∆n 2 = -0.07 and ∆n 3 = -0.09 at λ = 0.633 μm for a fluence Φ = 0.5 × 1015 ions/cm2. Propagation losses for hybrid-n 1 modes are α ≃ 10dB/cm.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Ion implanted optical waveguides in nonlinear optical organic crystal

Lukas Mutter, Andrea Guarino, Mojca Jazbinšek, Marko Zgonik, Peter Günter, and Max Döbeli
Opt. Express 15(2) 629-638 (2007)

Optical waveguides in Nd:GGG crystals produced by H+ or C3+ ion implantation

Ying-Ying Ren, Feng Chen, Qing-Ming Lu, and Hong-Ji Ma
Appl. Opt. 49(11) 2085-2089 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Haertle, M. Jazbinšek, G. Montemezzani, and P. Günter, “Nonlinear optical coefficients and phase-matching conditions in Sn2P2S6,” Opt. Express 13, 3765–3776 (2005).
    [Crossref] [PubMed]
  2. M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, ”Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459–2467 (2005).
    [Crossref]
  3. T. Bach, M. Jazbinšek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii,” Self pumped optical phase conjugation at 1.06μm in Te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005).
    [Crossref] [PubMed]
  4. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation, (Cambridge U. Press, Cambridge, 1994).
    [Crossref]
  5. D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
    [Crossref]
  6. D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, ”Refractive indices of Sn2P2S6 at visible and infrared wavelengths,” Opt. Express 13, 2047–2057 (2005).
    [Crossref] [PubMed]
  7. T. A. Maldonado and T. K. Gaylord, ”Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol. 14, 486–499 (1996).
    [Crossref]
  8. A. Yariv and P. Yeh, Optical waves in crystals, (Wiley Interscience, 1984).
  9. A. Guarino and P. Günter, “Nondestructive method for the characterization of ion-implanted optical waveguides,” Opt. Lett. 30, 2412–2414 (2005).
    [Crossref] [PubMed]
  10. P. J. Chandler and F.L Lama, ”A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Optical Acta 33, 127 (1986).
    [Crossref]
  11. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385 (1985).
    [Crossref]
  12. D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar wave-guides in KNbO3 by MeV He+ ion implantation,” Ferroelectrics 128, 79 (1992).
    [Crossref]
  13. A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
    [Crossref]
  14. M. Zha, D. Fluck, P. Günter, M. Fleuster, and C. Buchal, “2-wave mixing in photorefractive ion-implanted KNbO3 planar wave-guides at visible and near infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
    [Crossref] [PubMed]
  15. D. Marcuse, ”Modes of a symmetric slab optical waveguide in birefringent media,” IEEE J. Quantum Electron. 14, 736–741 (1978).
    [Crossref]

2005 (6)

1996 (1)

T. A. Maldonado and T. K. Gaylord, ”Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol. 14, 486–499 (1996).
[Crossref]

1993 (2)

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
[Crossref]

M. Zha, D. Fluck, P. Günter, M. Fleuster, and C. Buchal, “2-wave mixing in photorefractive ion-implanted KNbO3 planar wave-guides at visible and near infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[Crossref] [PubMed]

1992 (1)

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar wave-guides in KNbO3 by MeV He+ ion implantation,” Ferroelectrics 128, 79 (1992).
[Crossref]

1986 (1)

P. J. Chandler and F.L Lama, ”A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Optical Acta 33, 127 (1986).
[Crossref]

1985 (1)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385 (1985).
[Crossref]

1978 (1)

D. Marcuse, ”Modes of a symmetric slab optical waveguide in birefringent media,” IEEE J. Quantum Electron. 14, 736–741 (1978).
[Crossref]

Bach, T.

Berger, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Buchal, C.

Buchal, Ch.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
[Crossref]

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar wave-guides in KNbO3 by MeV He+ ion implantation,” Ferroelectrics 128, 79 (1992).
[Crossref]

Calligaro, M.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Chandler, P. J.

P. J. Chandler and F.L Lama, ”A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Optical Acta 33, 127 (1986).
[Crossref]

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation, (Cambridge U. Press, Cambridge, 1994).
[Crossref]

Chiang, K. S.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385 (1985).
[Crossref]

De Rossi, A.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Ducci, S.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Fleuster, M.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
[Crossref]

M. Zha, D. Fluck, P. Günter, M. Fleuster, and C. Buchal, “2-wave mixing in photorefractive ion-implanted KNbO3 planar wave-guides at visible and near infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[Crossref] [PubMed]

Fluck, D.

M. Zha, D. Fluck, P. Günter, M. Fleuster, and C. Buchal, “2-wave mixing in photorefractive ion-implanted KNbO3 planar wave-guides at visible and near infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[Crossref] [PubMed]

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
[Crossref]

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar wave-guides in KNbO3 by MeV He+ ion implantation,” Ferroelectrics 128, 79 (1992).
[Crossref]

Gaylord, T. K.

T. A. Maldonado and T. K. Gaylord, ”Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol. 14, 486–499 (1996).
[Crossref]

Grabar, A. A.

Guarino, A.

Günter, P.

A. Guarino and P. Günter, “Nondestructive method for the characterization of ion-implanted optical waveguides,” Opt. Lett. 30, 2412–2414 (2005).
[Crossref] [PubMed]

D. Haertle, A. Guarino, J. Hajfler, G. Montemezzani, and P. Günter, ”Refractive indices of Sn2P2S6 at visible and infrared wavelengths,” Opt. Express 13, 2047–2057 (2005).
[Crossref] [PubMed]

D. Haertle, M. Jazbinšek, G. Montemezzani, and P. Günter, “Nonlinear optical coefficients and phase-matching conditions in Sn2P2S6,” Opt. Express 13, 3765–3776 (2005).
[Crossref] [PubMed]

M. Jazbinšek, D. Haertle, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, ”Wavelength dependence of visible and near infrared photorefraction and phase conjugation in Sn2P2S6,” J. Opt. Soc. Am. B 22, 2459–2467 (2005).
[Crossref]

T. Bach, M. Jazbinšek, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii,” Self pumped optical phase conjugation at 1.06μm in Te-doped Sn2P2S6,” Opt. Express 13, 9890–9896 (2005).
[Crossref] [PubMed]

M. Zha, D. Fluck, P. Günter, M. Fleuster, and C. Buchal, “2-wave mixing in photorefractive ion-implanted KNbO3 planar wave-guides at visible and near infrared wavelengths,” Opt. Lett. 18, 577–579 (1993).
[Crossref] [PubMed]

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
[Crossref]

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar wave-guides in KNbO3 by MeV He+ ion implantation,” Ferroelectrics 128, 79 (1992).
[Crossref]

Haertle, D.

Hajfler, J.

Irmscher, R.

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar wave-guides in KNbO3 by MeV He+ ion implantation,” Ferroelectrics 128, 79 (1992).
[Crossref]

Jazbinšek, M.

Jundt, D. H.

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
[Crossref]

Lama, F.L

P. J. Chandler and F.L Lama, ”A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Optical Acta 33, 127 (1986).
[Crossref]

Lanco, L.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Maldonado, T. A.

T. A. Maldonado and T. K. Gaylord, ”Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol. 14, 486–499 (1996).
[Crossref]

Marcuse, D.

D. Marcuse, ”Modes of a symmetric slab optical waveguide in birefringent media,” IEEE J. Quantum Electron. 14, 736–741 (1978).
[Crossref]

Montemezzani, G.

Ortiz, V.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Sagnes, I.

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

Stoika, I. M.

Townsend, P. D.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation, (Cambridge U. Press, Cambridge, 1994).
[Crossref]

Vysochanskii, Y. M.

Yariv, A.

A. Yariv and P. Yeh, Optical waves in crystals, (Wiley Interscience, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical waves in crystals, (Wiley Interscience, 1984).

Zha, M.

Zhang, L.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation, (Cambridge U. Press, Cambridge, 1994).
[Crossref]

Ferroelectrics (1)

D. Fluck, R. Irmscher, Ch. Buchal, and P. Günter, “Tailoring of optical planar wave-guides in KNbO3 by MeV He+ ion implantation,” Ferroelectrics 128, 79 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Marcuse, ”Modes of a symmetric slab optical waveguide in birefringent media,” IEEE J. Quantum Electron. 14, 736–741 (1978).
[Crossref]

J. Appl. Phys. (2)

A. De Rossi, V. Ortiz, M. Calligaro, L. Lanco, S. Ducci, V. Berger, and I. Sagnes, “Measuring propagation loss in a multimode semiconductor waveguide,” J. Appl. Phys. 97, 073105 (2005).
[Crossref]

D. Fluck, D. H. Jundt, P. Günter, M. Fleuster, and Ch. Buchal, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023 (1993).
[Crossref]

J. Lightwave Technol. (2)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3, 385 (1985).
[Crossref]

T. A. Maldonado and T. K. Gaylord, ”Hybrid guided modes in biaxial planar waveguides,” J. Lightwave Technol. 14, 486–499 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (2)

Optical Acta (1)

P. J. Chandler and F.L Lama, ”A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Optical Acta 33, 127 (1986).
[Crossref]

Other (2)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation, (Cambridge U. Press, Cambridge, 1994).
[Crossref]

A. Yariv and P. Yeh, Optical waves in crystals, (Wiley Interscience, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Orientation of the implanted Sn2P2S6 crystals. (a,b, c) is the crystallographic system of the monoclinic Sn2P2S6, (x,y,z) is the cartesian system used and (x 1, x 2, x 3) indicate the dielectric coordinate system. Main refractive indices and the rotation α of the major axis of the indicatrix x 3 to the x-axis are given for T = 298K and wavelengths λ = 0.633 μm and λ = 1.55μm[6].

Fig. 2.
Fig. 2.

Measurement of TE modes in a He+ ion-implanted waveguide in a Sn2P2S6 crystal by barrier-coupling method. The crystal was implanted with an ion energy of 2MeV and a fluence Φ = 2×1015 ions/cm2.

Fig. 3.
Fig. 3.

Energy deposition profile of 2MeV He+ ions implantated into Sn2P2S6 crystals, evaluated with SRIM code. Maximum recoil energy transfer occurs at a depth of 6.02μm with a peak value of 0.94 × 104 eV/μm, while electronic energy transfer shows a more constant energy deposition profile of about 35×104 eV/μm.

Fig. 4.
Fig. 4.

Left column: measured effective indices for the He+ ion-implanted Sn2P2S6 waveguides with ion energy E = 2MeV and fluence Φ = 0.5,1 and 2 × 1015 ions/cm2 in black, blue and red open circles, respectively. The calculated modes of the best-fit profiles have been connected for clarity and are shown by the dotted lines. Right column: the reconstructed refractive index profiles described by equations (3) and the parameter sets given in Table 1. The dashed line indicates the unperturbed refractive indices. The three rows refer to hybrid-n 1, TE modes (n 2) and hybrid-n 3, respectively.

Fig. 5.
Fig. 5.

Waveguide transmission dependence on input wavelength for hybrid-n 1 modes of a Sn2P2S6 sample implanted with energy E = 2MeV and fluence 0.5×1015 ions/cm2. Sample length is L = 2.94mm. The line represents the theoretical curve of a Fabry Perot interferometer with Fresnel reflectivity of about 25% and propagation losses of 10±2dB/cm.

Fig. 6.
Fig. 6.

Two possible planar waveguide configurations for a z-implanted Sn2P2S6 crystal. (x,y,z) represents the Cartesian coordinate system of the crystal as described in Fig.1. (x′ ,y′ ,z′) is the waveguide reference system. a) Propagation is along the Cartesian x-axis. b) Propagation is along the Cartesian y-axis.

Fig. 7.
Fig. 7.

Normal surfaces (left) and refractive index n = κ 2 + β 2 k 0 2 of eigensolutions as a function of the internal propagation angle θ (right) for waves propagating in Sn2P2S6 crystals along x-axis. The green curve represents TE waves, the red curve TM waves. The refractive index of the TM waves will also change if the wave propagates along the +x or -x-axis.

Fig. 8.
Fig. 8.

Normal surfaces (left) and refractive index n = κ 2 + β 2 k 0 2 (right) of eigensolutions as a function of the internal propagation angle θ (bottom) for eigenwaves of a Sn2P2S6 crystal propagating at λ = 0.633 μm with the wavevector in the yz plane . The green curve represents hybrid-n 1 waves, the red curve hybrid-n 3 waves. For internal angles smaller than 15° the deviation from the indices n 1 and n 3 (dashed lines) is negligible.

Fig. 9.
Fig. 9.

Dependence of the angle Ω etween the electric field of the first waveguide mode and the y′ = x-axis for a Sn2P2S6 waveguide on the waveguide core of size d and propagation direction along z′ = y-axis. The core is surrounded by air and an isotropic material of refractive index ns = 2.9 to approximate the behaviour of an ion-implanted waveguide. For dλ the mode has hybrid nature and is polarized along dielectric axes x 3.

Tables (1)

Tables Icon

Table 1. Parameters for the calculation of refractive index profiles of He+ implanted Sn2P2S6 crystals using equations (3).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

r = e i 2 ϕ where tan ϕ = ( n core n sub ) 2 ρ k 0 2 n core 2 β 2 β 2 k 0 2 n sub 2
β 2 = k 0 2 ε i κ 2 i = 1,2,3
Δ n ( z ) = Δ n n ( z ) + Δ n el ( z )
Δ n n ( z ) = Δ n n , 0 ( 1 e ( Φ G n ( μ z ) G n , 0 ) γ n )
Δ n el ( z ) = Δ n el , 0 ( 1 e ( Φ G el ( μ z ) G el , 0 ) γ el ) ,
k × k × E + k 0 2 ε E = 0
ε = ( ε x x 0 ε x z 0 ε y y 0 ε x z 0 ε z z ) where { ε x x = n 1 2 sin 2 α + n 3 2 cos 2 α ε y y = n 2 2 ε z z = n 1 2 cos 2 α + n 3 2 sin 2 α ε x z = ε z x = ( n 1 2 n 3 2 ) cos α sin α
κ 1,2 = β ε x z ε x x ± ε 1 ε 3 ε x x 2 ( k 0 2 ε x x β 2 )
ε = ( ε x x ε x y 0 ε x y ε y y 0 0 0 ε z z ) where { ε x x = n 1 2 cos 2 α + n 3 2 sin 2 α ε y y = n 1 2 sin 2 α + n 3 2 cos 2 α ε x y = ε y x = ( n 1 2 n 3 2 ) cos α sin α ε z z = n 2 2
( κ 2 + β 2 k 0 2 ε 1 ε 3 ε x x ) ( κ 2 + β 2 ε z z ε x x k 0 2 ε z z ) = ε z z k 0 2 β 2 ε x y 2 ε x x
( β 2 + κ 2 k 0 2 ε 1 ) ( β 2 + κ 2 k 0 2 ε 3 ) = 0
r = e i 2 ϕ where tan ϕ = ( n core n air ) 2 ρ k 0 2 n core 2 β 2 β 2 k 0 2 n air 2

Metrics