Abstract

We present laser interference patterning of three-dimensional photonic lattice structures with three-step three-beam irradiation. In contrast to one-step four-beam interference patterning, the proposed method makes it possible to continuously tune the lattice constant and the photonic band gap without distortion of the lattice shape. We analytically show that all fourteen Bravais lattices are possible to be produced by choosing proper incident vectors of laser beams. A simple routine to seek the geometrical configuration of the incident beams for producing arbitrary Bravais lattices is shown. Furthermore, We experimentally demonstrate the fabrication of three-dimensional photonic lattices in the photoresist SU-8. Significant photonic band gap effects have been observed from the well-defined photonic lattices.

© 2006 Optical Society of America

PDF Article
OSA Recommended Articles
Translation of interference pattern by phase shift for diamond photonic crystals

Jun Hyuk Moon, Shu Yang, David J. Pine, and Seung-Man Yang
Opt. Express 13(24) 9841-9846 (2005)

Three-dimensional ordered patterns by light interference

Dongbin Mei, Bingying Cheng, Wei Hu, Zhaolin Li, and Daozhong Zhang
Opt. Lett. 20(5) 429-431 (1995)

Arrangements of four beams for any Bravais lattice

Liang Yuan, Guo Ping Wang, and Xingkang Huang
Opt. Lett. 28(19) 1769-1771 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
    [Crossref]
  2. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
    [Crossref]
  3. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
    [Crossref]
  4. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
    [Crossref]
  5. D. N. Sharp, A. J. Turberfield, and R. G. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B 68, 205102 (2003).
    [Crossref]
  6. S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608–610 (2003).
    [Crossref]
  7. G. J. Schneider, E. D. Wetzel, J. A. Murakowski, and D. W. Prather, “Fabrication of three-dimensional Yablonovite photonic crystals by multiple-exposure UV interference lithography,” Proc. SPIE 5720, 9 (2005).
    [Crossref]
  8. S. Shoji, H.-B. Sun, and S. Kawata, “Multi-Beam Interference Laser Fabrication of an Inverse Structure of Yablonovite Photonic Crystal,” Technical Digest of International Symposium on Photonic and Electromagnetic Crystal Structures V (PECS-V), 34 (2004).
  9. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).
    [Crossref]
  10. L. Yuan, G. P. Wang, and X. Huang, “Arrangements of four beams for any Bravais lattice,” Opt. Lett. 28, 1769–1771 (2003).
    [Crossref] [PubMed]
  11. Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
    [Crossref]
  12. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
    [Crossref] [PubMed]

2005 (1)

G. J. Schneider, E. D. Wetzel, J. A. Murakowski, and D. W. Prather, “Fabrication of three-dimensional Yablonovite photonic crystals by multiple-exposure UV interference lithography,” Proc. SPIE 5720, 9 (2005).
[Crossref]

2003 (4)

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

D. N. Sharp, A. J. Turberfield, and R. G. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B 68, 205102 (2003).
[Crossref]

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608–610 (2003).
[Crossref]

L. Yuan, G. P. Wang, and X. Huang, “Arrangements of four beams for any Bravais lattice,” Opt. Lett. 28, 1769–1771 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

2000 (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
[Crossref]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

1997 (1)

J. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]

1991 (1)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[Crossref] [PubMed]

Blanco, A.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Busch, K.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Cai, L. Z.

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
[Crossref]

Denning, R. G.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B 68, 205102 (2003).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
[Crossref]

Deubel, M.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Enkrich, C.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Fan, S.

J. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[Crossref] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
[Crossref]

Huang, X.

Joannopoulos, J.

J. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]

Kawata, S.

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608–610 (2003).
[Crossref]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

S. Shoji, H.-B. Sun, and S. Kawata, “Multi-Beam Interference Laser Fabrication of an Inverse Structure of Yablonovite Photonic Crystal,” Technical Digest of International Symposium on Photonic and Electromagnetic Crystal Structures V (PECS-V), 34 (2004).

Koch, W.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[Crossref] [PubMed]

Meisel, D. C.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Miklyaev, Yu. V.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Murakowski, J. A.

G. J. Schneider, E. D. Wetzel, J. A. Murakowski, and D. W. Prather, “Fabrication of three-dimensional Yablonovite photonic crystals by multiple-exposure UV interference lithography,” Proc. SPIE 5720, 9 (2005).
[Crossref]

Prather, D. W.

G. J. Schneider, E. D. Wetzel, J. A. Murakowski, and D. W. Prather, “Fabrication of three-dimensional Yablonovite photonic crystals by multiple-exposure UV interference lithography,” Proc. SPIE 5720, 9 (2005).
[Crossref]

Schneider, G. J.

G. J. Schneider, E. D. Wetzel, J. A. Murakowski, and D. W. Prather, “Fabrication of three-dimensional Yablonovite photonic crystals by multiple-exposure UV interference lithography,” Proc. SPIE 5720, 9 (2005).
[Crossref]

Sharp, D. N.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B 68, 205102 (2003).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
[Crossref]

Shoji, S.

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608–610 (2003).
[Crossref]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

S. Shoji, H.-B. Sun, and S. Kawata, “Multi-Beam Interference Laser Fabrication of an Inverse Structure of Yablonovite Photonic Crystal,” Technical Digest of International Symposium on Photonic and Electromagnetic Crystal Structures V (PECS-V), 34 (2004).

Sun, H.-B.

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608–610 (2003).
[Crossref]

S. Shoji, H.-B. Sun, and S. Kawata, “Multi-Beam Interference Laser Fabrication of an Inverse Structure of Yablonovite Photonic Crystal,” Technical Digest of International Symposium on Photonic and Electromagnetic Crystal Structures V (PECS-V), 34 (2004).

Turberfield, A. J.

D. N. Sharp, A. J. Turberfield, and R. G. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B 68, 205102 (2003).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
[Crossref]

Villeneuve, P. R.

J. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]

von Freymann, G.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Wang, G. P.

Wang, Y. R.

Wegener, M.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Wetzel, E. D.

G. J. Schneider, E. D. Wetzel, J. A. Murakowski, and D. W. Prather, “Fabrication of three-dimensional Yablonovite photonic crystals by multiple-exposure UV interference lithography,” Proc. SPIE 5720, 9 (2005).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[Crossref] [PubMed]

Yang, X. L.

Yuan, L.

Appl. Phys. Lett. (3)

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

S. Shoji, H.-B. Sun, and S. Kawata, “Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference,” Appl. Phys. Lett. 83, 608–610 (2003).
[Crossref]

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284 (2003).
[Crossref]

Nature (London) (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographiclithography,” Nature (London) 404, 53–56 (2000).
[Crossref]

J. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143–149 (1997).
[Crossref]

Opt. Lett. (3)

Phys. Rev. B (1)

D. N. Sharp, A. J. Turberfield, and R. G. Denning, “Holographic photonic crystals with diamond symmetry,” Phys. Rev. B 68, 205102 (2003).
[Crossref]

Phys. Rev. Lett. (1)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms,” Phys. Rev. Lett. 67, 2295–2298 (1991).
[Crossref] [PubMed]

Proc. SPIE (1)

G. J. Schneider, E. D. Wetzel, J. A. Murakowski, and D. W. Prather, “Fabrication of three-dimensional Yablonovite photonic crystals by multiple-exposure UV interference lithography,” Proc. SPIE 5720, 9 (2005).
[Crossref]

Other (1)

S. Shoji, H.-B. Sun, and S. Kawata, “Multi-Beam Interference Laser Fabrication of an Inverse Structure of Yablonovite Photonic Crystal,” Technical Digest of International Symposium on Photonic and Electromagnetic Crystal Structures V (PECS-V), 34 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics