Abstract

We experimentally demonstrate a self-adaptive compensation of the pump power dependent thermal lens in an Nd:YAG laser through a thin layer of a medium with a negative temperature dependence of the refractive index. The layer is thermally coupled to the laser rod and leads to a strikingly improved beam quality over a large stability range. The scheme allows for a scaling to high powers as well as pulsed-mode operation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.D. Foster and L.M. Osternink, "Thermal Effects in a Nd:YAG Laser," J. Appl. Phys. 41,3656-3663 (1970).
    [CrossRef]
  2. W. Koechner, Solid-State Laser Engineering, (Springer, Berlin, 1999).
  3. N. Hodgson and H. Weber, Optical Resonators, (Springer, Berlin, 1997).
  4. H. Glur, R. Lavi and T. Graf, "Reduction of thermally induced lenses in Nd:YAG with low temperatures," IEEE J. Quantum Electron. 40,499-504 (2004).
    [CrossRef]
  5. U.J. Greiner and H.H. Klingenberg, "Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror," Opt. Lett. 19,1207-1209 (1994).
    [CrossRef] [PubMed]
  6. A.V. Kudryashov, "Intracavity laser beam control," in Laser Resonators II. 1999 San Jose, A.V. Kudryashov, ed., Proc. SPIE 3611, 32-41 (1999).
    [CrossRef]
  7. S. Jackel, I. Moshe and R. Lavi, "High performance oscillators employing adaptive optics comprised of discrete elements," in Laser Resonators II. 1999 San Jose, A.V. Kudryashov, ed., Proc. SPIE 3611, 42-49 (1999).
    [CrossRef]
  8. D.C. Hanna, C.G. Sawyers and M.A. Yuratich, "Telescopic resonators for large-volume TEM00 mode operation," Opt. Quantum Electron. 13,493-507 (1981).
    [CrossRef]
  9. R. Koch, "Self-adaptive optical elements for compensation of thermal lensing effects in diode end-pumped solid state lasers - proposal and preliminary experiments," Opt. Commun. 140,158-164 (1997).
    [CrossRef]
  10. R. Weber, T. Graf and H.P. Weber, "Self-Adjusting Compensating Thermal Lens to Balance the Thermally Induced Lens in Solid-State Lasers," IEEE J. Quantum Electron. 36,757-764 (2000).
    [CrossRef]
  11. E. Wyss, M.S. Roth, T. Graf and H.P. Weber, "Thermo-optical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38,1620-1628 (2002).
    [CrossRef]
  12. T. Graf, E. Wyss and H.P. Weber, "Self-adaptive compensation for the thermal lens in high-power lasers,"in Advanced Solid-State Lasers, Ch. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 688-692.
  13. M. S. Roth, E. Wyss, H. Glur, and H.P. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett. 30,1665-1667 (2005).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

H. Glur, R. Lavi and T. Graf, "Reduction of thermally induced lenses in Nd:YAG with low temperatures," IEEE J. Quantum Electron. 40,499-504 (2004).
[CrossRef]

2002 (1)

E. Wyss, M.S. Roth, T. Graf and H.P. Weber, "Thermo-optical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38,1620-1628 (2002).
[CrossRef]

2000 (1)

R. Weber, T. Graf and H.P. Weber, "Self-Adjusting Compensating Thermal Lens to Balance the Thermally Induced Lens in Solid-State Lasers," IEEE J. Quantum Electron. 36,757-764 (2000).
[CrossRef]

1997 (1)

R. Koch, "Self-adaptive optical elements for compensation of thermal lensing effects in diode end-pumped solid state lasers - proposal and preliminary experiments," Opt. Commun. 140,158-164 (1997).
[CrossRef]

1994 (1)

1981 (1)

D.C. Hanna, C.G. Sawyers and M.A. Yuratich, "Telescopic resonators for large-volume TEM00 mode operation," Opt. Quantum Electron. 13,493-507 (1981).
[CrossRef]

1970 (1)

J.D. Foster and L.M. Osternink, "Thermal Effects in a Nd:YAG Laser," J. Appl. Phys. 41,3656-3663 (1970).
[CrossRef]

Foster, J.D.

J.D. Foster and L.M. Osternink, "Thermal Effects in a Nd:YAG Laser," J. Appl. Phys. 41,3656-3663 (1970).
[CrossRef]

Glur, H.

Graf, T.

H. Glur, R. Lavi and T. Graf, "Reduction of thermally induced lenses in Nd:YAG with low temperatures," IEEE J. Quantum Electron. 40,499-504 (2004).
[CrossRef]

E. Wyss, M.S. Roth, T. Graf and H.P. Weber, "Thermo-optical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38,1620-1628 (2002).
[CrossRef]

R. Weber, T. Graf and H.P. Weber, "Self-Adjusting Compensating Thermal Lens to Balance the Thermally Induced Lens in Solid-State Lasers," IEEE J. Quantum Electron. 36,757-764 (2000).
[CrossRef]

Greiner, U.J.

Hanna, D.C.

D.C. Hanna, C.G. Sawyers and M.A. Yuratich, "Telescopic resonators for large-volume TEM00 mode operation," Opt. Quantum Electron. 13,493-507 (1981).
[CrossRef]

Klingenberg, H.H.

Koch, R.

R. Koch, "Self-adaptive optical elements for compensation of thermal lensing effects in diode end-pumped solid state lasers - proposal and preliminary experiments," Opt. Commun. 140,158-164 (1997).
[CrossRef]

Lavi, R.

H. Glur, R. Lavi and T. Graf, "Reduction of thermally induced lenses in Nd:YAG with low temperatures," IEEE J. Quantum Electron. 40,499-504 (2004).
[CrossRef]

Osternink, L.M.

J.D. Foster and L.M. Osternink, "Thermal Effects in a Nd:YAG Laser," J. Appl. Phys. 41,3656-3663 (1970).
[CrossRef]

Roth, M. S.

Roth, M.S.

E. Wyss, M.S. Roth, T. Graf and H.P. Weber, "Thermo-optical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38,1620-1628 (2002).
[CrossRef]

Sawyers, C.G.

D.C. Hanna, C.G. Sawyers and M.A. Yuratich, "Telescopic resonators for large-volume TEM00 mode operation," Opt. Quantum Electron. 13,493-507 (1981).
[CrossRef]

Weber, H.P.

M. S. Roth, E. Wyss, H. Glur, and H.P. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett. 30,1665-1667 (2005).
[CrossRef] [PubMed]

E. Wyss, M.S. Roth, T. Graf and H.P. Weber, "Thermo-optical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38,1620-1628 (2002).
[CrossRef]

R. Weber, T. Graf and H.P. Weber, "Self-Adjusting Compensating Thermal Lens to Balance the Thermally Induced Lens in Solid-State Lasers," IEEE J. Quantum Electron. 36,757-764 (2000).
[CrossRef]

Weber, R.

R. Weber, T. Graf and H.P. Weber, "Self-Adjusting Compensating Thermal Lens to Balance the Thermally Induced Lens in Solid-State Lasers," IEEE J. Quantum Electron. 36,757-764 (2000).
[CrossRef]

Wyss, E.

M. S. Roth, E. Wyss, H. Glur, and H.P. Weber, "Generation of radially polarized beams in a Nd:YAG laser with self-adaptive overcompensation of the thermal lens," Opt. Lett. 30,1665-1667 (2005).
[CrossRef] [PubMed]

E. Wyss, M.S. Roth, T. Graf and H.P. Weber, "Thermo-optical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38,1620-1628 (2002).
[CrossRef]

Yuratich, M.A.

D.C. Hanna, C.G. Sawyers and M.A. Yuratich, "Telescopic resonators for large-volume TEM00 mode operation," Opt. Quantum Electron. 13,493-507 (1981).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. Glur, R. Lavi and T. Graf, "Reduction of thermally induced lenses in Nd:YAG with low temperatures," IEEE J. Quantum Electron. 40,499-504 (2004).
[CrossRef]

R. Weber, T. Graf and H.P. Weber, "Self-Adjusting Compensating Thermal Lens to Balance the Thermally Induced Lens in Solid-State Lasers," IEEE J. Quantum Electron. 36,757-764 (2000).
[CrossRef]

E. Wyss, M.S. Roth, T. Graf and H.P. Weber, "Thermo-optical compensation methods for high-power lasers," IEEE J. Quantum Electron. 38,1620-1628 (2002).
[CrossRef]

J. Appl. Phys. (1)

J.D. Foster and L.M. Osternink, "Thermal Effects in a Nd:YAG Laser," J. Appl. Phys. 41,3656-3663 (1970).
[CrossRef]

Opt. Commun. (1)

R. Koch, "Self-adaptive optical elements for compensation of thermal lensing effects in diode end-pumped solid state lasers - proposal and preliminary experiments," Opt. Commun. 140,158-164 (1997).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

D.C. Hanna, C.G. Sawyers and M.A. Yuratich, "Telescopic resonators for large-volume TEM00 mode operation," Opt. Quantum Electron. 13,493-507 (1981).
[CrossRef]

Other (5)

W. Koechner, Solid-State Laser Engineering, (Springer, Berlin, 1999).

N. Hodgson and H. Weber, Optical Resonators, (Springer, Berlin, 1997).

A.V. Kudryashov, "Intracavity laser beam control," in Laser Resonators II. 1999 San Jose, A.V. Kudryashov, ed., Proc. SPIE 3611, 32-41 (1999).
[CrossRef]

S. Jackel, I. Moshe and R. Lavi, "High performance oscillators employing adaptive optics comprised of discrete elements," in Laser Resonators II. 1999 San Jose, A.V. Kudryashov, ed., Proc. SPIE 3611, 42-49 (1999).
[CrossRef]

T. Graf, E. Wyss and H.P. Weber, "Self-adaptive compensation for the thermal lens in high-power lasers,"in Advanced Solid-State Lasers, Ch. Marshall, ed., Vol. 50 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), pp. 688-692.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Laser resonator with a self-adaptive compensating element. A thin layer of a liquid (L) is sandwiched in between two glass rods (GR) placed in a cooling mount (CM).

Fig. 2.
Fig. 2.

TOSCA:(a) side view and (b) front view of the laser head. (c) Image of the laser head (the arrow marks the position of the compensating gel disk).

Fig. 3.
Fig. 3.

Measuring output power (PM), beam quality (CCD 1), and thermal lens (CCD 2) for three configurations: (a) single-head, cw; (b) dual-head, cw; (c) single-head, Q-switched

Fig. 4.
Fig. 4.

(a) Output versus pump power of the single-head resonator with and without compensation. Interferograms (b) without and (c) with compensation.

Fig. 5.
Fig. 5.

(a) Output power versus pump power and (b) M 2 versus output power of the single-head resonator with and without compensation.

Fig. 6.
Fig. 6.

Scaling of the output power through multiple but compensated laser heads. (a) Output power and (b) M2.

Fig. 7.
Fig. 7.

(a) Output power versus pump power and (b) M2 versus output power of the single-head resonator in cw and pulsed operation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ P = ( 2 M 2 1 ) 4 λ D *

Metrics