Abstract

We show using simulations that a combination of Orthogonal Frequency Division Multiplexing (OFDM) and Optical Single Sideband Modulation (OSSB) can be used to adaptively compensate for chromatic dispersion in ultra-long-haul 10 Gbps Standard Single-Mode Fiber (S-SMF) links. Additionally, for optical noise limited systems with Forward-Error Correction, OFDM can accept an Optical Signal to Noise Ratio (OSNR) 0.5 dB lower than NRZ systems providing the optical carrier is suppressed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. McNicol, M. O’Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, "Electrical domain compensation of optical dispersion," in Tech. Digest of the Conference on Optical Fiber Communication, Vol. 5 (Optical Society of America, 2005), pp. 269 - 271.
  2. D. Fonseca, A. Cartaxo, and P. Monteiro, "Transmission improvements using electronic dispersion compensation at the transmitter side and RZ pulse format in optical single-sideband systems," in Proceedings of the 7th International Conference on Transparent Optical Networks, (IEEE, 2005), pp. 381-384.
  3. R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
    [CrossRef]
  4. D. McGhan, C. Laperle, A. Savchenko, Li Chuandong, G.  Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation," in Tech. Digest of the Conference on Optical Fiber Communication, Vol. 6 (Optical Society of America, 2005), pp. 79 - 81.
  5. T. Kupfer and C. Schulien, "Maximum likelihood sequence estimation at 10 Gb/s from concept to implementation," in Proceedings of the Lasers and Electro-Optics Society Annual Meeting, (IEEE, 2005), pp. 896-897.
  6. M. Sieben, J. Conradi, and D.E. Dodds, "Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation," J. Lightwave Technol. 17, 1742-1749 (1999).
    [CrossRef]
  7. R. Hui, B. Zhu, R. Huang, C.T. Allen, K.R. Demarest and D. Richards, "Subcarrier multiplexing for high-speed optical transmission," J. Lightwave Technol. 20, 417-427 (2002).
    [CrossRef]
  8. J.G. Proakis and M. Salehi, Essentials of Communications Systems Engineering (Prentice Hall, New Jersey, 2005) Chapter 11.
  9. B.J. Dixon, R.D. Pollard, and S. Iezekeil, "Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds," IEEE Trans. Microwave Theory and Techniques 49,1404-1409 (2001).
    [CrossRef]
  10. N.E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, "Generation and propagation of a 1550-nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fiber using a directly modulated DFB," in Tech. Digest of the Conference on Optical Fiber Communication, Vol. 5 (Optical Society of America, 2005), pp. 319-321.
  11. O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
    [CrossRef]
  12. D. Chanda, A.B. Sesay, and Bob Davis, "Performance of clipped OFDM signal in fiber," in Proceedings of the Canadian Conference on Electrical and Computer Engineering, Vol. 4 (IEEE, 2004) pp. 2401-2404.
  13. A. J. Lowery and J. Armstrong, "10 Gbit/s Multimode fiber link using power-efficient orthogonal-frequency-division multiplexing," Opt. Express 13, 10003-10009 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-25-10003
    [CrossRef] [PubMed]
  14. J. Armstrong and A. J. Lowery, "Power efficient optical OFDM," Electron. Lett.2006 (to be published).
  15. T. Li and I. Kaminow (Eds.), Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002) Chapter 13.

2006 (1)

J. Armstrong and A. J. Lowery, "Power efficient optical OFDM," Electron. Lett.2006 (to be published).

2005 (3)

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
[CrossRef]

A. J. Lowery and J. Armstrong, "10 Gbit/s Multimode fiber link using power-efficient orthogonal-frequency-division multiplexing," Opt. Express 13, 10003-10009 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-25-10003
[CrossRef] [PubMed]

R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

2002 (1)

2001 (1)

B.J. Dixon, R.D. Pollard, and S. Iezekeil, "Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds," IEEE Trans. Microwave Theory and Techniques 49,1404-1409 (2001).
[CrossRef]

1999 (1)

Allen, C.T.

Armstrong, J.

Ayala, A.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
[CrossRef]

Bayval, P.

R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Conradi, J.

Demarest, K.R.

Dixon, B.J.

B.J. Dixon, R.D. Pollard, and S. Iezekeil, "Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds," IEEE Trans. Microwave Theory and Techniques 49,1404-1409 (2001).
[CrossRef]

Dodds, D.E.

Glick, M.

R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

González, O.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
[CrossRef]

Huang, R.

Hui, R.

Iezekeil, S.

B.J. Dixon, R.D. Pollard, and S. Iezekeil, "Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds," IEEE Trans. Microwave Theory and Techniques 49,1404-1409 (2001).
[CrossRef]

Killey, R.I.

R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Lowery, A. J.

Mikhailov, V.

R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Pérez-Jiménez, R.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
[CrossRef]

Pollard, R.D.

B.J. Dixon, R.D. Pollard, and S. Iezekeil, "Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds," IEEE Trans. Microwave Theory and Techniques 49,1404-1409 (2001).
[CrossRef]

Rabadán, J.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
[CrossRef]

Richards, D.

Rodríguez, S.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
[CrossRef]

Sieben, M.

Watts, P.M.

R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

Zhu, B.

Electron. Lett. (1)

J. Armstrong and A. J. Lowery, "Power efficient optical OFDM," Electron. Lett.2006 (to be published).

IEE Proc. Optoelectron. (1)

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, "OFDM over indoor wireless optical channel," IEE Proc. Optoelectron. 152, 199-204 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R.I. Killey, P.M. Watts, V. Mikhailov, M. Glick, and P. Bayval, "Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator," IEEE Photon. Technol. Lett. 17, 714-716 (2005).
[CrossRef]

IEEE Trans. Microwave Theory and Techniques (1)

B.J. Dixon, R.D. Pollard, and S. Iezekeil, "Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds," IEEE Trans. Microwave Theory and Techniques 49,1404-1409 (2001).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (8)

D. Chanda, A.B. Sesay, and Bob Davis, "Performance of clipped OFDM signal in fiber," in Proceedings of the Canadian Conference on Electrical and Computer Engineering, Vol. 4 (IEEE, 2004) pp. 2401-2404.

T. Li and I. Kaminow (Eds.), Optical Fiber Telecommunications IVB (Academic Press, San Diego, 2002) Chapter 13.

J.G. Proakis and M. Salehi, Essentials of Communications Systems Engineering (Prentice Hall, New Jersey, 2005) Chapter 11.

N.E. Jolley, H. Kee, R. Rickard, J. Tang, and K. Cordina, "Generation and propagation of a 1550-nm 10 Gbit/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fiber using a directly modulated DFB," in Tech. Digest of the Conference on Optical Fiber Communication, Vol. 5 (Optical Society of America, 2005), pp. 319-321.

D. McGhan, C. Laperle, A. Savchenko, Li Chuandong, G.  Mak, and M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation," in Tech. Digest of the Conference on Optical Fiber Communication, Vol. 6 (Optical Society of America, 2005), pp. 79 - 81.

T. Kupfer and C. Schulien, "Maximum likelihood sequence estimation at 10 Gb/s from concept to implementation," in Proceedings of the Lasers and Electro-Optics Society Annual Meeting, (IEEE, 2005), pp. 896-897.

J. McNicol, M. O’Sullivan, K. Roberts, A. Comeau, D. McGhan, and L. Strawczynski, "Electrical domain compensation of optical dispersion," in Tech. Digest of the Conference on Optical Fiber Communication, Vol. 5 (Optical Society of America, 2005), pp. 269 - 271.

D. Fonseca, A. Cartaxo, and P. Monteiro, "Transmission improvements using electronic dispersion compensation at the transmitter side and RZ pulse format in optical single-sideband systems," in Proceedings of the 7th International Conference on Transparent Optical Networks, (IEEE, 2005), pp. 381-384.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical OFDM system block diagram.

Fig. 2.
Fig. 2.

Optical spectra: after modulator (dark red); after first amplifier (light green).

Fig. 3.
Fig. 3.

RF spectrum after the photodiode. The “noise” is due to intermodulation distortion.

Fig. 4.
Fig. 4.

Phase dependence of the fiber link stored in the training file and used for equalization.

Fig. 5.
Fig. 5.

Electrical constellations before and after equalization.

Fig. 6.
Fig. 6.

BER vs. OSNR (dB) for OFDM (lower, open circles) and NRZ systems (upper, dots).

Metrics