Abstract

We present a quantitative study of various limitations on quantum cryptographic systems operating with sifted-key rates over Mbit/s. The dead time of silicon APDs not only limits the sifted-key rate but also causes correlation between the neighboring key bits. In addition to the well-known count-rate dependent timing jitter in avalanche photo-diode (APD), the faint laser sources, the vertical cavity surface emission lasers (VCSELs) in our system, also induce a significant amount of data-dependent timing jitter. Both the dead time and the data-dependent timing jitter are major limiting factors in designing QKD systems with sifted-key rates beyond Mbit/s.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennet and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, India,1984), pp. 175-179.
  2. C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
    [CrossRef] [PubMed]
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
    [CrossRef]
  4. J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
    [CrossRef]
  5. J. G. Rarity, P. R. Tapster and P. M. Gorman, "Secure Free-space key-exchange to 1.9 km and beyond," J. Mod. Opt. 48, 1887-1901 (2001).
  6. C. Elliott, D. Pearson, and G. Troxel, "Quantum cryptography in practice," in SIGCOMM’ 03: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (ACM Press, New York, 2003), pp. 227-238.
  7. D. S. Bethune, M. Navarro, and W. P. Risk, "Enhanced autocompensating quantum cryptography system," Appl. Opt. 41, 1640-1648 (2002).
    [CrossRef] [PubMed]
  8. J. Breguet, A. Muller, and N. Gisin, "Quantum cryptography with polarized photons in optical fibers, experiment and practical limits," J. of Mod. Opt.,  41, 2405-2412 (1994).
    [CrossRef]
  9. P. D. Townsend, "Experimental investigation of the performance limits for first telecommunication-window quantum cryptography system," IEEE Photon. Technol. Lett. 10, 1048-1050 (1998).
    [CrossRef]
  10. K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004).
    [CrossRef]
  11. X. Tang, L. Ma, A. Mink, A. Nakassis, B. Hershman, J. Bienfang, R. F. Boisvert, C. Clark, and C. Williams, "High Speed Fiber-Based Quantum Key Distribution using Polarization Encoding," in Optics and Photonics 2005: Quantum Communications and Quantum Imaging III, Proc. SPIE 5893, 1A-1-1A-9 (2005)
  12. A. Nakassis, J. Bienfang, and C. Williams, "Expeditious reconciliation for practical quantum key distribution," in Defense and Security Symposium: Quantum Information and Computation II, Proc. SPIE 5436,28-35 (2004).
    [CrossRef]
  13. D. S. Pearson and C. Elliott, "On the optimal mean photon number for quantum cryptography," Eprint quant-ph/0403065 (2004), http://arxiv.org/fpt/quant-ph/papers/0403/0403064.pdf
  14. J. K. Guenter and J. A. Tatum, "Modulating VCSELs," (Honeywell), http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.
  15. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13,3015-3020 (2005).
    [CrossRef] [PubMed]

2005

2004

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

A. Nakassis, J. Bienfang, and C. Williams, "Expeditious reconciliation for practical quantum key distribution," in Defense and Security Symposium: Quantum Information and Computation II, Proc. SPIE 5436,28-35 (2004).
[CrossRef]

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

2002

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

D. S. Bethune, M. Navarro, and W. P. Risk, "Enhanced autocompensating quantum cryptography system," Appl. Opt. 41, 1640-1648 (2002).
[CrossRef] [PubMed]

2001

J. G. Rarity, P. R. Tapster and P. M. Gorman, "Secure Free-space key-exchange to 1.9 km and beyond," J. Mod. Opt. 48, 1887-1901 (2001).

1998

P. D. Townsend, "Experimental investigation of the performance limits for first telecommunication-window quantum cryptography system," IEEE Photon. Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

1994

J. Breguet, A. Muller, and N. Gisin, "Quantum cryptography with polarized photons in optical fibers, experiment and practical limits," J. of Mod. Opt.,  41, 2405-2412 (1994).
[CrossRef]

1992

C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

Bethune, D. S.

Bienfang, J.

A. Nakassis, J. Bienfang, and C. Williams, "Expeditious reconciliation for practical quantum key distribution," in Defense and Security Symposium: Quantum Information and Computation II, Proc. SPIE 5436,28-35 (2004).
[CrossRef]

Bienfang, J.C.

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

Breguet, J.

J. Breguet, A. Muller, and N. Gisin, "Quantum cryptography with polarized photons in optical fibers, experiment and practical limits," J. of Mod. Opt.,  41, 2405-2412 (1994).
[CrossRef]

Buller, G. S.

K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13,3015-3020 (2005).
[CrossRef] [PubMed]

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

Cova, S. D.

Fernandez, V.

K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13,3015-3020 (2005).
[CrossRef] [PubMed]

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

J. Breguet, A. Muller, and N. Gisin, "Quantum cryptography with polarized photons in optical fibers, experiment and practical limits," J. of Mod. Opt.,  41, 2405-2412 (1994).
[CrossRef]

Gordon, K. J.

K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13,3015-3020 (2005).
[CrossRef] [PubMed]

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

Gorman, P. M.

J. G. Rarity, P. R. Tapster and P. M. Gorman, "Secure Free-space key-exchange to 1.9 km and beyond," J. Mod. Opt. 48, 1887-1901 (2001).

Gross, A. J.

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

Hershman, B. J.

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

Mink, A.

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

Muller, A.

J. Breguet, A. Muller, and N. Gisin, "Quantum cryptography with polarized photons in optical fibers, experiment and practical limits," J. of Mod. Opt.,  41, 2405-2412 (1994).
[CrossRef]

Nakassis, A.

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

A. Nakassis, J. Bienfang, and C. Williams, "Expeditious reconciliation for practical quantum key distribution," in Defense and Security Symposium: Quantum Information and Computation II, Proc. SPIE 5436,28-35 (2004).
[CrossRef]

Navarro, M.

Rarity, J. G.

J. G. Rarity, P. R. Tapster and P. M. Gorman, "Secure Free-space key-exchange to 1.9 km and beyond," J. Mod. Opt. 48, 1887-1901 (2001).

Rech, I.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Risk, W. P.

Tang, X.

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

Tapster, P. R.

J. G. Rarity, P. R. Tapster and P. M. Gorman, "Secure Free-space key-exchange to 1.9 km and beyond," J. Mod. Opt. 48, 1887-1901 (2001).

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Townsend, P. D.

K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13,3015-3020 (2005).
[CrossRef] [PubMed]

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

P. D. Townsend, "Experimental investigation of the performance limits for first telecommunication-window quantum cryptography system," IEEE Photon. Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

Williams, C.

A. Nakassis, J. Bienfang, and C. Williams, "Expeditious reconciliation for practical quantum key distribution," in Defense and Security Symposium: Quantum Information and Computation II, Proc. SPIE 5436,28-35 (2004).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

K. J. Gordon, V. Fernandez, P. D. Townsend, and G. S. Buller, "A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System," IEEE J. Quantum Electron. 40, 900-908 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

P. D. Townsend, "Experimental investigation of the performance limits for first telecommunication-window quantum cryptography system," IEEE Photon. Technol. Lett. 10, 1048-1050 (1998).
[CrossRef]

J. Mod. Opt.

J. G. Rarity, P. R. Tapster and P. M. Gorman, "Secure Free-space key-exchange to 1.9 km and beyond," J. Mod. Opt. 48, 1887-1901 (2001).

J. of Mod. Opt.

J. Breguet, A. Muller, and N. Gisin, "Quantum cryptography with polarized photons in optical fibers, experiment and practical limits," J. of Mod. Opt.,  41, 2405-2412 (1994).
[CrossRef]

Opt. Express

Opt. Express.

J.C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lum D. H. Su, C. W. Clark, "Quantum key distribution with 1.25 Gbps clock synchronization," Opt. Express. 7, 2011-2016 (2004).
[CrossRef]

Phys. Rev. Lett.

C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68, 3121-3124 (1992).
[CrossRef] [PubMed]

Proc. SPIE

A. Nakassis, J. Bienfang, and C. Williams, "Expeditious reconciliation for practical quantum key distribution," in Defense and Security Symposium: Quantum Information and Computation II, Proc. SPIE 5436,28-35 (2004).
[CrossRef]

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
[CrossRef]

Other

C. Elliott, D. Pearson, and G. Troxel, "Quantum cryptography in practice," in SIGCOMM’ 03: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (ACM Press, New York, 2003), pp. 227-238.

D. S. Pearson and C. Elliott, "On the optimal mean photon number for quantum cryptography," Eprint quant-ph/0403065 (2004), http://arxiv.org/fpt/quant-ph/papers/0403/0403064.pdf

J. K. Guenter and J. A. Tatum, "Modulating VCSELs," (Honeywell), http://www.adopco.com/publication/documents/ModulatingVCSELs.pdf.

C. H. Bennet and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, India,1984), pp. 175-179.

X. Tang, L. Ma, A. Mink, A. Nakassis, B. Hershman, J. Bienfang, R. F. Boisvert, C. Clark, and C. Williams, "High Speed Fiber-Based Quantum Key Distribution using Polarization Encoding," in Optics and Photonics 2005: Quantum Communications and Quantum Imaging III, Proc. SPIE 5893, 1A-1-1A-9 (2005)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Configuration of the NIST fiber-based QKD System

Fig. 2.
Fig. 2.

Sifted-key rate as a function of QCTRs in experiment (open square) and the sifted-key rate calculated with Eq. (2) (dashed line for t dead = 0 and solid line for t dead = 50 ns). We also show the QBER at these QCTR (solid triangle).

Fig. 3.
Fig. 3.

This “pulse” steam represents a histogram of detection events collected from one APD over 2 seconds using the SPC-600 photon-counting card. The data was measured with a return-to-zero repetitive bit sequence at 625 Mbit/s. The detection time window, or the bit period, is 1.6 ns.

Fig. 4.
Fig. 4.

The solid triangle points show relative delays of the histogram of repetitive data streams with different bit periods for the entire system including that caused by APD and VCSEL. The insertion shows the measured histograms for the system. The solid square points show relative delay of repetitive data with different bit periods at the output of VCSEL at the bias applied in the system.

Fig. 5.
Fig. 5.

The histogram of (a) measured repetitive data stream, (b) measured random data stream, and (c) simulated random data stream.

Tables (1)

Tables Icon

Table 1. QCTRs and the corresponding numbers of clock period

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = 2 ( t dead + 1 R 1 )
R 1 = μ × v × L f × L o × L c × L p × P d ,

Metrics