Abstract

A rigorous method of modeling the performance of metal-semiconductor-metal photodetectors (MSM-PD) that use several electromagnetic resonance (ER) modes and optical modes to enhance performance is presented. These ER and optical modes include surface plasmons, Wood-Rayleigh anomalies and vertical cavity modes. Five modeling algorithms are integrated together in a time-dependent way to model a 256 pseudo-random bit sequence (PRBS) of 850nm wavelength TM polarized light, the electromagnetic field distribution in the MSM-PD, quasi-static electric field, the charge carrier motion, and an algorithm to construct eye diagrams and analyze responsivity, inter-symbol interference (ISI) and bit error ratio (BER). We report on the use of a combination of ER and optical modes in channeling more than 83% of the incident light into the silicon even though 60% of the Si surface area is covered with metal contacts. Also, this channeled light is localized near the Si surface below the contact window. The absorption in the metal contacts, reflection, diffraction, electromagnetic field profiles, Poynting vector, photocurrent, eye diagrams, quality factors, responsivity and BER are calculated. Designs for Si MSM-PDs with a bandwidth of 100Gb/s, responsivities in the range of 0.05→0.30A/W and BERs in the range of 10-20→10-10 are described.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81, 1687-1706 (1993).
    [CrossRef]
  2. S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
    [CrossRef]
  3. S. Y. Chou, M. Liu, "Nanoscale tera-hertz metal-semiconductor-metal photodetectors," IEEE J. Quantum Electron 28, 2358 (1992).
    [CrossRef]
  4. R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000).
    [CrossRef]
  5. M. Y. Liu, E. Chen and S. Y. Chou, "140 Ghz metal-semiconductor-metal photodetectors on silicon on insulator substrate with a scaled layer," Appl. Phys. Lett. 65, 887-888 (1994).
    [CrossRef]
  6. S. Collin, F. Pardo, and J.-L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003).
    [CrossRef]
  7. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
    [CrossRef]
  8. D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron Devices 52, 2365-2373 (2005).
    [CrossRef]
  9. D. Crouse and R. Solomon, "Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes," Solid-State Electron. 491697-1701 (2005).
    [CrossRef]
  10. D. Crouse and P. Keshavareddy, "Electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A: Pure Appl. Opt. 8175-181 (2006).
    [CrossRef]
  11. H. Lochbihler, and R. Depine, "Highly conducting wire gratings in the resonance region," Appl. Opt. 32, 3459-3465 (1993).
    [CrossRef] [PubMed]
  12. H. Lochbihler," Surface polaritons on gold-wire gratings," Phys. Rev. B 50, 4795 (1994).
    [CrossRef]
  13. C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photon. Technol. Lett 15, 1585-1587 (2003).
    [CrossRef]
  14. D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 20, 7760-7771 (2005)
    [CrossRef]
  15. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 - 2848 (1999).
    [CrossRef]
  16. Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 0574031-0574034 (2002).
    [CrossRef]
  17. F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostrucutred metals," Phys. Rev. B. 66, 1554121-155412 (2002).
    [CrossRef]
  18. A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002).
    [CrossRef]
  19. S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002).
    [CrossRef]
  20. M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B. 66, 195105-195116 (2002).
    [CrossRef]
  21. K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994).
    [CrossRef]
  22. S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd Edition (Wiley-Interscience, New York, 1994).
  23. Y. C. Lim and R. A. Moore, "Properties of Alternately Charged Coplanar Parallel Strips by Conformal Mappings," IEEE Trans. on Electron.Devices 15, 173-180 (1968).
    [CrossRef]
  24. StephenY. Chou and Mark Y. Liu, "Nanoscale Tera-Hertz Metal-Semiconductor-Metal Photodetectors," IEEE J. Quantum. Electron. 28, 2358-2368 (1992).
    [CrossRef]
  25. S. Y. Chou, M. Y. Liu, and P. B. Fischer, "Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width," Appl. Phys. Lett. 61, 477-479 (1992).
    [CrossRef]
  26. R. F. Pierret, Semiconductor Device Fundamentals 1st ed. (Addison-Wesley, New York, 1996), p. 78.
  27. S. Ramo, "Currents induced by Electron Motion," Proc. IRE 27, 584, (1939).
    [CrossRef]
  28. MAXIM High-Frequency/Fiber Communications Group, Optical Receiver Performance Evaluation (Maxim Integrated Products, 2003).
  29. S. Alexander, Optical Communication Receiver Design (SPIE-International Society for Optical Engineers, New York, 1997).

2006

D. Crouse and P. Keshavareddy, "Electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A: Pure Appl. Opt. 8175-181 (2006).
[CrossRef]

2005

D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron Devices 52, 2365-2373 (2005).
[CrossRef]

D. Crouse and R. Solomon, "Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes," Solid-State Electron. 491697-1701 (2005).
[CrossRef]

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 20, 7760-7771 (2005)
[CrossRef]

2004

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

2003

S. Collin, F. Pardo, and J.-L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003).
[CrossRef]

C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photon. Technol. Lett 15, 1585-1587 (2003).
[CrossRef]

2002

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 0574031-0574034 (2002).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostrucutred metals," Phys. Rev. B. 66, 1554121-155412 (2002).
[CrossRef]

A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002).
[CrossRef]

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B. 66, 195105-195116 (2002).
[CrossRef]

2000

R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000).
[CrossRef]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 - 2848 (1999).
[CrossRef]

1996

S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
[CrossRef]

1994

M. Y. Liu, E. Chen and S. Y. Chou, "140 Ghz metal-semiconductor-metal photodetectors on silicon on insulator substrate with a scaled layer," Appl. Phys. Lett. 65, 887-888 (1994).
[CrossRef]

K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994).
[CrossRef]

H. Lochbihler," Surface polaritons on gold-wire gratings," Phys. Rev. B 50, 4795 (1994).
[CrossRef]

1993

1992

S. Y. Chou, M. Liu, "Nanoscale tera-hertz metal-semiconductor-metal photodetectors," IEEE J. Quantum Electron 28, 2358 (1992).
[CrossRef]

StephenY. Chou and Mark Y. Liu, "Nanoscale Tera-Hertz Metal-Semiconductor-Metal Photodetectors," IEEE J. Quantum. Electron. 28, 2358-2368 (1992).
[CrossRef]

S. Y. Chou, M. Y. Liu, and P. B. Fischer, "Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width," Appl. Phys. Lett. 61, 477-479 (1992).
[CrossRef]

1968

Y. C. Lim and R. A. Moore, "Properties of Alternately Charged Coplanar Parallel Strips by Conformal Mappings," IEEE Trans. on Electron.Devices 15, 173-180 (1968).
[CrossRef]

1939

S. Ramo, "Currents induced by Electron Motion," Proc. IRE 27, 584, (1939).
[CrossRef]

Averin, S.

S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
[CrossRef]

Barbara, A.

A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002).
[CrossRef]

Brueck, S. R. J.

K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994).
[CrossRef]

Bustarret, E.

A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002).
[CrossRef]

Campbell, J. C.

R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 0574031-0574034 (2002).
[CrossRef]

Chen, E.

M. Y. Liu, E. Chen and S. Y. Chou, "140 Ghz metal-semiconductor-metal photodetectors on silicon on insulator substrate with a scaled layer," Appl. Phys. Lett. 65, 887-888 (1994).
[CrossRef]

Chou, S. Y.

M. Y. Liu, E. Chen and S. Y. Chou, "140 Ghz metal-semiconductor-metal photodetectors on silicon on insulator substrate with a scaled layer," Appl. Phys. Lett. 65, 887-888 (1994).
[CrossRef]

S. Y. Chou, M. Liu, "Nanoscale tera-hertz metal-semiconductor-metal photodetectors," IEEE J. Quantum Electron 28, 2358 (1992).
[CrossRef]

S. Y. Chou, M. Y. Liu, and P. B. Fischer, "Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width," Appl. Phys. Lett. 61, 477-479 (1992).
[CrossRef]

Chui, C. O.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photon. Technol. Lett 15, 1585-1587 (2003).
[CrossRef]

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

S. Collin, F. Pardo, and J.-L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002).
[CrossRef]

Crouse, D.

D. Crouse and P. Keshavareddy, "Electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A: Pure Appl. Opt. 8175-181 (2006).
[CrossRef]

D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron Devices 52, 2365-2373 (2005).
[CrossRef]

D. Crouse and R. Solomon, "Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes," Solid-State Electron. 491697-1701 (2005).
[CrossRef]

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 20, 7760-7771 (2005)
[CrossRef]

Csutak, S. M.

R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000).
[CrossRef]

De Fays, M.

S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
[CrossRef]

Depine, R.

Fischer, P. B.

S. Y. Chou, M. Y. Liu, and P. B. Fischer, "Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width," Appl. Phys. Lett. 61, 477-479 (1992).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostrucutred metals," Phys. Rev. B. 66, 1554121-155412 (2002).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 - 2848 (1999).
[CrossRef]

Hugi, J.

S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
[CrossRef]

Ilegems, M.

S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
[CrossRef]

Keshavareddy, P.

D. Crouse and P. Keshavareddy, "Electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A: Pure Appl. Opt. 8175-181 (2006).
[CrossRef]

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 20, 7760-7771 (2005)
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 0574031-0574034 (2002).
[CrossRef]

Li, R.

R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000).
[CrossRef]

Lim, Y. C.

Y. C. Lim and R. A. Moore, "Properties of Alternately Charged Coplanar Parallel Strips by Conformal Mappings," IEEE Trans. on Electron.Devices 15, 173-180 (1968).
[CrossRef]

Liu, M.

S. Y. Chou, M. Liu, "Nanoscale tera-hertz metal-semiconductor-metal photodetectors," IEEE J. Quantum Electron 28, 2358 (1992).
[CrossRef]

Liu, M. Y.

M. Y. Liu, E. Chen and S. Y. Chou, "140 Ghz metal-semiconductor-metal photodetectors on silicon on insulator substrate with a scaled layer," Appl. Phys. Lett. 65, 887-888 (1994).
[CrossRef]

S. Y. Chou, M. Y. Liu, and P. B. Fischer, "Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width," Appl. Phys. Lett. 61, 477-479 (1992).
[CrossRef]

Lochbihler, H.

Lopez-Rios, T.

A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002).
[CrossRef]

Martin-Moreno, L.

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostrucutred metals," Phys. Rev. B. 66, 1554121-155412 (2002).
[CrossRef]

Moore, R. A.

Y. C. Lim and R. A. Moore, "Properties of Alternately Charged Coplanar Parallel Strips by Conformal Mappings," IEEE Trans. on Electron.Devices 15, 173-180 (1968).
[CrossRef]

Myers, D. R.

K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994).
[CrossRef]

Okyay, A. K.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photon. Technol. Lett 15, 1585-1587 (2003).
[CrossRef]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

S. Collin, F. Pardo, and J.-L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002).
[CrossRef]

Pelouard, J.

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002).
[CrossRef]

Pelouard, J.-L.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

S. Collin, F. Pardo, and J.-L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 - 2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 - 2848 (1999).
[CrossRef]

Quemerais, P.

A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002).
[CrossRef]

Ramo, S.

S. Ramo, "Currents induced by Electron Motion," Proc. IRE 27, 584, (1939).
[CrossRef]

Sachot, R.

S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
[CrossRef]

Saraswat, K. C.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photon. Technol. Lett 15, 1585-1587 (2003).
[CrossRef]

Schaub, J. D.

R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000).
[CrossRef]

Scott, K. A. M.

K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994).
[CrossRef]

Solomon, R.

D. Crouse and R. Solomon, "Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes," Solid-State Electron. 491697-1701 (2005).
[CrossRef]

Soref, R. A.

R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81, 1687-1706 (1993).
[CrossRef]

Stephen,

StephenY. Chou and Mark Y. Liu, "Nanoscale Tera-Hertz Metal-Semiconductor-Metal Photodetectors," IEEE J. Quantum. Electron. 28, 2358-2368 (1992).
[CrossRef]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002).
[CrossRef]

Treacy, M. M. J.

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B. 66, 195105-195116 (2002).
[CrossRef]

Zolper, J. C.

K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Y. Liu, E. Chen and S. Y. Chou, "140 Ghz metal-semiconductor-metal photodetectors on silicon on insulator substrate with a scaled layer," Appl. Phys. Lett. 65, 887-888 (1994).
[CrossRef]

S. Collin, F. Pardo, and J.-L. Pelouard, "Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector," Appl. Phys. Lett. 83, 1521-1523 (2003).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, "Efficient light absorption in metal-semiconductor-metal nanostructures," Appl. Phys. Lett. 85, 194-196 (2004).
[CrossRef]

S. Y. Chou, M. Y. Liu, and P. B. Fischer, "Tera-hertz GaAs metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width," Appl. Phys. Lett. 61, 477-479 (1992).
[CrossRef]

Devices

Y. C. Lim and R. A. Moore, "Properties of Alternately Charged Coplanar Parallel Strips by Conformal Mappings," IEEE Trans. on Electron.Devices 15, 173-180 (1968).
[CrossRef]

IEEE J. Quantum Electron

S. Y. Chou, M. Liu, "Nanoscale tera-hertz metal-semiconductor-metal photodetectors," IEEE J. Quantum Electron 28, 2358 (1992).
[CrossRef]

IEEE J. Quantum. Electron.

StephenY. Chou and Mark Y. Liu, "Nanoscale Tera-Hertz Metal-Semiconductor-Metal Photodetectors," IEEE J. Quantum. Electron. 28, 2358-2368 (1992).
[CrossRef]

IEEE Photon. Technol. Lett

C. O. Chui, A. K. Okyay, and K. C. Saraswat, "Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors," IEEE Photon. Technol. Lett 15, 1585-1587 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Li, J. D. Schaub, S. M. Csutak, and J. C. Campbell, "A high-speed monolithic silicon photoreceiver fabricated on SOI," IEEE Photon. Technol. Lett. 12, 1046-1048 (2000).
[CrossRef]

K. A. M. Scott, S. R. J. Brueck, J. C. Zolper, and D. R. Myers, "Ion implantation enhanced metal-Si-metal photodetectors," IEEE Photon. Technol. Lett. 6, 635-638 (1994).
[CrossRef]

IEEE Trans. Electron Devices

D. Crouse, "Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications," IEEE Trans. Electron Devices 52, 2365-2373 (2005).
[CrossRef]

J. Appl. Phys.

S. Averin, R. Sachot, J. Hugi, M. De Fays, and M. Ilegems, "Two-dimensional device modeling and analysis of GaInAs metal-semiconductor-metal photodiode structures," J. Appl. Phys. 80, 1553-1558 (1996).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

D. Crouse and P. Keshavareddy, "Electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors," J. Opt. A: Pure Appl. Opt. 8175-181 (2006).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J. Pelouard, "Horizontal and vertical surface resonances in transmission metallic gratings," J. Opt. A: Pure Appl. Opt. 4, 154-160 (2002).
[CrossRef]

Opt. Express

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express 20, 7760-7771 (2005)
[CrossRef]

Phy. Rev. B.

A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, "Optical transmission through subwavelength metallic gratings," Phy. Rev. B. 66, 1614031-1614034 (2002).
[CrossRef]

Phys. Rev. B

H. Lochbihler," Surface polaritons on gold-wire gratings," Phys. Rev. B 50, 4795 (1994).
[CrossRef]

Phys. Rev. B.

F. J. Garcia-Vidal and L. Martin-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostrucutred metals," Phys. Rev. B. 66, 1554121-155412 (2002).
[CrossRef]

M. M. J. Treacy, "Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings," Phys. Rev. B. 66, 195105-195116 (2002).
[CrossRef]

Phys. Rev. Lett.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845 - 2848 (1999).
[CrossRef]

Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 0574031-0574034 (2002).
[CrossRef]

Proc. IEEE

R. A. Soref, "Silicon-based optoelectronics," Proc. IEEE 81, 1687-1706 (1993).
[CrossRef]

Proc. IRE

S. Ramo, "Currents induced by Electron Motion," Proc. IRE 27, 584, (1939).
[CrossRef]

Solid-State Electron.

D. Crouse and R. Solomon, "Numerical modeling of surface plasmon enhanced silicon on insulator avalanche photodiodes," Solid-State Electron. 491697-1701 (2005).
[CrossRef]

Other

MAXIM High-Frequency/Fiber Communications Group, Optical Receiver Performance Evaluation (Maxim Integrated Products, 2003).

S. Alexander, Optical Communication Receiver Design (SPIE-International Society for Optical Engineers, New York, 1997).

S. K. Ghandhi, VLSI Fabrication Principles: Silicon and Gallium Arsenide, 2nd Edition (Wiley-Interscience, New York, 1994).

R. F. Pierret, Semiconductor Device Fundamentals 1st ed. (Addison-Wesley, New York, 1996), p. 78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Left: A top view of a typical MSM device. Right: A cross section view of a typical MSM device and the commonly assumed but incorrect electromagnetic field profile.

Fig. 2.
Fig. 2.

A schematic of the IEORA program. For each step in time (each of the 256 bits is divided into approximately 20 time steps), all five algorithms above are called on to perform their tasks as listed above.

Fig. 3.
Fig. 3.

The structural parameters for the Si MSM-PD that is analyzed in this work. One period of the structure is shown, from the MIDDLE of one contact to the MIDDLE of the next identical and identically surrounded contact.

Fig. 4.
Fig. 4.

Top Left: Ro and To for the Si-MSM-PD structure that is optimized to select a hybrid WR/CM mode. The structure is designed to have a slight misalignment of R0 and T0 because of the desirable field profile that is subsequently produced. Top Right: The Poynting vector showing that a large amount of energy is channeled around the electrical contacts and into the Si substrate. The groove with ε=2 shows increased energy channeling compared with the other groove with ε=1. This asymmetry of the groove dielectrics is introduced to inhibit HSPs. Bottom: Two graphs of the energy density showing a desirably high energy density between the contacts and close to the contact/Si interface. While the light localization near the contact/Si interface is significant, the expanded view shown in the bottom right plot shows that there is still some light that propagates deep into the Si that will reduce bandwidth and increase ISI and BER.

Fig. 5.
Fig. 5.

The PRBS Algorithm uses a m-stage shift register to obtain the bit sequence. The index k represents the kth bit. After each period of time, or output of one bit, the values in the registers are modified according to the equations shown in the figure.

Fig. 6.
Fig. 6.

A typical optical communication system including the four components: photodetector, transimpedance amplifier, limiting amplifier and clock data recovery block. The ISI will be evaluated at the input of the TIA.

Fig. 7.
Fig. 7.

Top Left: The eye diagram for a Si MSM-PD operating at 100Gb/s with an active layer depth of 0.5μm. Top Right: The dependence of responsivity and BER on the depth of the active layer. Bottom: The eye diagram for a Si MSM-PD operating at 100Gb/s with an active layer depth of 6μm. Both eye diagrams use the same y-axis units, illustrating the fact that the 6μm active layer device has higher responsivity but much increased noise and BER. For the device with 0.5μm active area thickness, the BER has a very low value of 10-20 but with a low responsivity of 0.06A/W, whereas for the device with 6μm active area thickness, the BER is a higher value of 10-9 but with a higher responsivity of 0.25A/W.

Tables (1)

Tables Icon

Table 1. Calculated optical losses for the Si MSM-PD (Fig. 3). The incident beam is normally incident, TM polarized and has an energy (wavelength) of 1.46eV (850nm).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A wire = Re ( z ) d cos θ surfaces of wires H z 2 dl
D n = cos θ n cos θ incident R n 2
g carriers = η QE ħ ω S
r i ( t + Δ t ) = r i ( t ) + v i ( E r t ) Δ t
I = ch arg es q ch arg e v ch arg e E bias V applied
Q = V pp 2 × V ISI σ 1 + σ 0
BER = 1 2 erfc ( Q 2 )

Metrics