Abstract

We present simulations of plasmonic transmission lines consisting of planar metal strips embedded in isotropic dielectric media, with a particular emphasis on the long-range surface plasmon polariton (SPP) modes that can be supported in such structures. Our computational method is based on analyzing the eigenfrequencies corresponding to the wave equation subject to a mixture of periodic, electric and magnetic boundary conditions. We demonstrate the accuracy of our approach through comparisons with previously reported simulations based on the semi-analytical method-of-lines. We apply our method to study a variety of aspects of long-range SPPs, including tradeoffs between mode confinement and propagation distance, the modeling of bent waveguides and the effect of disorder and periodicity on the long-ranging modes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
    [CrossRef]
  2. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
    [CrossRef]
  3. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
    [CrossRef]
  4. J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005).
    [CrossRef]
  5. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61,10484-10503 (2000).
    [CrossRef]
  6. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  7. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 52, 844-846 (2000).
    [CrossRef]
  8. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-977.
    [CrossRef] [PubMed]
  9. S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 13, 4674-4682 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4674.
    [CrossRef] [PubMed]
  10. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmonpolariton waveguides" J. Appl. Phys. 98, 043109 (2005).
    [CrossRef]
  11. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
    [CrossRef]
  12. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
    [CrossRef]
  13. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005).
    [CrossRef]
  14. A. Boltasseva, S.I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons" Opt. Express 13, 4237-4243 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4237.
    [CrossRef] [PubMed]
  15. S.J. Al-Bader, "Optical Transmission on Metallic Wires - Fundamental Modes," IEEE J. Quantum Electron. 40, 325-329 (2004).
    [CrossRef]
  16. Rashid Zia, Anu Chandran, and Mark L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005).
    [CrossRef] [PubMed]
  17. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  18. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
    [CrossRef] [PubMed]
  19. D.M. Pozar, Microwave Engineering (John Wiley & Sons, 1998).
  20. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
    [CrossRef]
  21. J.J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5286-5301 (1986).
    [CrossRef]
  22. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000)http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
    [CrossRef] [PubMed]
  23. J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
    [CrossRef]
  24. P. B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  25. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  26. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  27. R. Mittra and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave Guid. Wave Lett. 5, 84-86 (1995).
    [CrossRef]
  28. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  29. G. A. Farias and A. A. Maradudin, " Effect of surface roughness on the attenuation of surface polaritons on metal films," Phys. Rev. B 27, 7093-7106 (1983).
    [CrossRef]
  30. W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
    [CrossRef]
  31. W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, "Photonic surfaces for surface-plasmon polaritons," J. Opt. Soc. Am. A 14, 1654-1661 (1997).
    [CrossRef]
  32. P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004).
    [CrossRef]
  33. S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
    [CrossRef]
  34. A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine 5, 34-50 (2004).
    [CrossRef]
  35. R. Islam, F. Elek, and G.V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow," Electron Lett. 40, 315-317 (2004).
    [CrossRef]
  36. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  37. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  38. M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
    [CrossRef]
  39. S. O’Brien and J.B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites" J. Phys. Condens. Matter 14, 4035-4044 (2002).
    [CrossRef]
  40. K.C. Huang, M.L. Povinelli, and J.D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85543-545 (2004).
    [CrossRef]
  41. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1966).

2005

J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-977.
[CrossRef] [PubMed]

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 13, 4674-4682 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4674.
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmonpolariton waveguides" J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005).
[CrossRef]

A. Boltasseva, S.I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons" Opt. Express 13, 4237-4243 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4237.
[CrossRef] [PubMed]

Rashid Zia, Anu Chandran, and Mark L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005).
[CrossRef] [PubMed]

S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

2004

K.C. Huang, M.L. Povinelli, and J.D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85543-545 (2004).
[CrossRef]

A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine 5, 34-50 (2004).
[CrossRef]

R. Islam, F. Elek, and G.V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow," Electron Lett. 40, 315-317 (2004).
[CrossRef]

P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004).
[CrossRef]

S.J. Al-Bader, "Optical Transmission on Metallic Wires - Fundamental Modes," IEEE J. Quantum Electron. 40, 325-329 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

2002

S. O’Brien and J.B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites" J. Phys. Condens. Matter 14, 4035-4044 (2002).
[CrossRef]

2001

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
[CrossRef]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
[CrossRef]

2000

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000)http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 52, 844-846 (2000).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61,10484-10503 (2000).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

1999

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

1997

1996

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

1995

R. Mittra and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave Guid. Wave Lett. 5, 84-86 (1995).
[CrossRef]

1994

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

1986

J.J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5286-5301 (1986).
[CrossRef]

1983

G. A. Farias and A. A. Maradudin, " Effect of surface roughness on the attenuation of surface polaritons on metal films," Phys. Rev. B 27, 7093-7106 (1983).
[CrossRef]

1981

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

1976

1972

P. B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1968

V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Al-Bader, S.J.

S.J. Al-Bader, "Optical Transmission on Metallic Wires - Fundamental Modes," IEEE J. Quantum Electron. 40, 325-329 (2004).
[CrossRef]

Aussenegg, F.R.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

Barclay, P.E.

S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

Barnes, W.L.

W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, "Photonic surfaces for surface-plasmon polaritons," J. Opt. Soc. Am. A 14, 1654-1661 (1997).
[CrossRef]

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Baudrion, A.-L.

J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005).
[CrossRef]

Berenger, J.-P.

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Berini, P.

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-977.
[CrossRef] [PubMed]

S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express 13, 4674-4682 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4674.
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmonpolariton waveguides" J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 52, 844-846 (2000).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61,10484-10503 (2000).
[CrossRef]

Berolo, E.

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 52, 844-846 (2000).
[CrossRef]

Boltasseva, A.

Borselli, M.

P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004).
[CrossRef]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Bozhevolnyi, S.I.

Burke, J.J.

J.J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5286-5301 (1986).
[CrossRef]

Caloz, C.

A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine 5, 34-50 (2004).
[CrossRef]

Charbonneau, R.

Christy, R.W.

P. B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Dereux, A.

J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

Economou, E. N.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Eleftheriades, G.V.

R. Islam, F. Elek, and G.V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow," Electron Lett. 40, 315-317 (2004).
[CrossRef]

Elek, F.

R. Islam, F. Elek, and G.V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow," Electron Lett. 40, 315-317 (2004).
[CrossRef]

Farias, G. A.

G. A. Farias and A. A. Maradudin, " Effect of surface roughness on the attenuation of surface polaritons on metal films," Phys. Rev. B 27, 7093-7106 (1983).
[CrossRef]

Felidj, N.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

Friedman, M.D.

S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Girard, C.

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

González, M.U.

J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005).
[CrossRef]

Goudonnet, J.-P.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Gundogdu, T. F.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Huang, K.C.

K.C. Huang, M.L. Povinelli, and J.D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85543-545 (2004).
[CrossRef]

Islam, R.

R. Islam, F. Elek, and G.V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow," Electron Lett. 40, 315-317 (2004).
[CrossRef]

Itoh, T.

A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine 5, 34-50 (2004).
[CrossRef]

Jette-Charbonneau, S.

Joannopoulos, J.D.

K.C. Huang, M.L. Povinelli, and J.D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85543-545 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kafesaki, M.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Kitson, S.C.

W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, "Photonic surfaces for surface-plasmon polaritons," J. Opt. Soc. Am. A 14, 1654-1661 (1997).
[CrossRef]

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Kjaer, K.

Kobayashi, T.

Koschny, Th.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Kottmann, J.P.

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
[CrossRef]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000)http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

Krenn, J. R.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Krenn, J.R.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

Lacroute, Y.

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

Lahoud, N.

Lai, A.

A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine 5, 34-50 (2004).
[CrossRef]

Lamprecht, B.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

Larsen, M.S.

Leitner, A.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

Leosson, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005).
[CrossRef]

A. Boltasseva, S.I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons" Opt. Express 13, 4237-4243 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4237.
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Lisicka-Shrzek, E.

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 52, 844-846 (2000).
[CrossRef]

Maier, S.A.

S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

Maradudin, A. A.

G. A. Farias and A. A. Maradudin, " Effect of surface roughness on the attenuation of surface polaritons on metal films," Phys. Rev. B 27, 7093-7106 (1983).
[CrossRef]

Marcuse, D.

Martin, O.J.F.

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
[CrossRef]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000)http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

Mattiussi, G.

Mittra, R.

R. Mittra and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave Guid. Wave Lett. 5, 84-86 (1995).
[CrossRef]

Morimoto, A.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nikolajsen, T.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005).
[CrossRef]

A. Boltasseva, S.I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons" Opt. Express 13, 4237-4243 (2005)http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4237.
[CrossRef] [PubMed]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

O’Brien, S.

S. O’Brien and J.B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites" J. Phys. Condens. Matter 14, 4035-4044 (2002).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Painter, O.

S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004).
[CrossRef]

Pekel, U.

R. Mittra and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave Guid. Wave Lett. 5, 84-86 (1995).
[CrossRef]

Penciu, R. S.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Pendry, J.B.

S. O’Brien and J.B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites" J. Phys. Condens. Matter 14, 4035-4044 (2002).
[CrossRef]

Povinelli, M.L.

K.C. Huang, M.L. Povinelli, and J.D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85543-545 (2004).
[CrossRef]

Preist, T.W.

W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, "Photonic surfaces for surface-plasmon polaritons," J. Opt. Soc. Am. A 14, 1654-1661 (1997).
[CrossRef]

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

Salerno, M.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

Sambles, J.R.

W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, "Photonic surfaces for surface-plasmon polaritons," J. Opt. Soc. Am. A 14, 1654-1661 (1997).
[CrossRef]

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Sarid, D.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

Schider, G.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

Schultz, S.

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000)http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Smith, D.R.

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
[CrossRef]

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Spectral response of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2000)http://www.opticsinfobase.org/abstract.cfm?URI=oe-6-11-213.
[CrossRef] [PubMed]

Søndergaard, T.

Soukoulis, C. M.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Srinivasan, K.

P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004).
[CrossRef]

Stegeman, G. I.

J.J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5286-5301 (1986).
[CrossRef]

Takahara, J.

Taki, H.

Tamir, T.

J.J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5286-5301 (1986).
[CrossRef]

Veselago, V.G.

V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Weeber, J.-C.

J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

Yamagishi, S.

Appl. Phys. Lett.

B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, and F.R. Aussenegg, "Surface plasmon propagation in microscale metal stripes," Appl. Phys. Lett. 79, 51-53 (2001).
[CrossRef]

J.-C. Weeber, M.U. González, A.-L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips" Appl. Phys. Lett. 87, 221101, (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," Appl. Phys. Lett. 85, 5833-5835 (2004).
[CrossRef]

P.E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, "Probing the dispersive and spatial properties of photonic crystal waveguides via highly efficient coupling from fiber tapers," Appl. Phys. Lett. 85, 4-6 (2004).
[CrossRef]

S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, "Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing," Appl. Phys. Lett. 86, 071103 (2005).
[CrossRef]

K.C. Huang, M.L. Povinelli, and J.D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett. 85543-545 (2004).
[CrossRef]

Chem. Phys. Lett.

J.P. Kottmann, O.J.F. Martin, D.R. Smith, and S. Schultz, "Dramatic localized electromagnetic enhancement in plasmon resonant nanowires," Chem. Phys. Lett. 341, 1-6 (2001).
[CrossRef]

Electron Lett.

R. Islam, F. Elek, and G.V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contra-directiona power flow," Electron Lett. 40, 315-317 (2004).
[CrossRef]

IEEE J. Quantum Electron.

S.J. Al-Bader, "Optical Transmission on Metallic Wires - Fundamental Modes," IEEE J. Quantum Electron. 40, 325-329 (2004).
[CrossRef]

IEEE Microwave Guid. Wave Lett.

R. Mittra and U. Pekel, "A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves," IEEE Microwave Guid. Wave Lett. 5, 84-86 (1995).
[CrossRef]

IEEE Microwave Magazine

A. Lai, C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine 5, 34-50 (2004).
[CrossRef]

J. Appl. Phys.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmonpolariton waveguides" J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

J. Comput. Phys.

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Lightwave Technol.

J. Opt. A: Pure Appl. Opt.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Condens. Matter

S. O’Brien and J.B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites" J. Phys. Condens. Matter 14, 4035-4044 (2002).
[CrossRef]

Nature (London)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

G. A. Farias and A. A. Maradudin, " Effect of surface roughness on the attenuation of surface polaritons on metal films," Phys. Rev. B 27, 7093-7106 (1983).
[CrossRef]

W.L. Barnes, T.W. Preist, S.C. Kitson, and J.R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

P. B. Johnson and R.W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

J.J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5286-5301 (1986).
[CrossRef]

J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999).
[CrossRef]

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.-P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64045411 (2001).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures," Phys. Rev. B 61,10484-10503 (2000).
[CrossRef]

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001).
[CrossRef]

Phys. Rev. Lett.

D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

Other

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1966).

D.M. Pozar, Microwave Engineering (John Wiley & Sons, 1998).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Unit cell for simulating: (a) a straight waveguide of thickness t and width w – the patterned zones represent the perfect walls placed at the boundaries of the computational domain; (b) a bent waveguide with a mean radius of curvature ρ0. The colored volume behind the boundary ρ= ρ s represents a PML. Inserts: 3D views of the two types of structures.

Fig. 2.
Fig. 2.

Real and imaginary parts of the Ag dielectric function εAg = εˊAg +iε″Ag .

Fig. 3.
Fig. 3.

Dispersion with thickness of the 4 fundamental modes supported by a straight Ag strip with rounded corners (w = 1 μm, r = 5 nm, εd = 4) at the free-space wavelength λ vac = 633 nm. For comparison, we include data points from Ref [5] for the ssb0 mode (black stars) and the sab0 mode (black crosses) supported by a rectangular Ag strip with 90 degree corners (w = 1 μm, r = 0 nm, εd = 4).

Fig. 4.
Fig. 4.

Cross-section of the Ey field component for (a) the sab0 mode when t = 200 nm; (b) the aab0 mode when t = 200 nm; (c) the sa0b mode when t = 40 nm; (d) the aab0 mode when t = 40 nm. The calculations have been made at the free-space wavelength λ vac = 633 nm. Note that the color scale has intentionally been saturated to reveal the field pattern.

Fig. 5.
Fig. 5.

Cross-section of the Ey field component for (a) the ssb0 mode when t = 200 nm; (b) the asb0 mode when t = 200 nm; (c) the ssb0 mode when t = 40 nm; (d) the asb0 mode when t = 40 nm. The calculations have been made at the free-space wavelength λ vac = 633 nm.

Fig. 6.
Fig. 6.

Effects of rounding the corners on the ssb0 mode for two Ag strips with different thicknesses t (w = 1 μm, λ vac = 633 nm). Insert: geometry of the strip.

Fig. 7.
Fig. 7.

Electric field distribution of the ssb0 mode (left panels) and the sab0 mode (right panels) supported by: (a) and (b) a rectangular strip with t = 160 nm and r = 0 nm; (c) and (d) a rounded strip with t = 160 nm and r = 80 nm; (e) and (f) a cylindrical wire with r = 80 nm. The modes have been computed at λ vac = 633 nm and the color scale is the same for all plots.

Fig. 8.
Fig. 8.

Electric field distribution for Au strips (εAu = -11.8 + i1.23 at λ vac = 633 nm) on a glass substrate. The refractive indexes of the substrate and the upper cladding are nsub = 1.52 and nup , respectively. (a) Modes supported by a rectangular strip (w = 1 μm, t = 20 nm) for increasing values of nup ; (b) Modes supported by rectangular strips of different thicknesses when nsub = 1.52 and nup = 1.55. The size of the computational domain is three to six times larger than the size of the panels.

Fig. 9.
Fig. 9.

(a) Dispersion with frequency of the ssb0 mode for a straight and a bent SPP transmission line; (b) Electric field distribution of the ssb0 mode for different radii of curvature ρ0.

Fig. 10.
Fig. 10.

Electric field pattern of the ssb0 mode in a plane perpendicular to propagation and in the upper plane of the Ag strip. The dashed zones are the horizontal electric wall and the vertical magnetic wall placed at the boundaries of the computational domain. Insert: Poynting vector above the surface.

Fig. 11.
Fig. 11.

(a) 3D and side views of a periodic structure with a square wave modulation (w = 1 μm, t=40 nm, P = 150 nm). (b) Dispersion with frequency of the ssb0 mode for three modulation heights c. Insert: zoom of the plot near the gap region. Note that the upper bands actually cross the light line, however, the mode density within the computational domain becomes so large that the solutions of interest could not be easily identified. (c) Imaginary part of frequency vs. real part of wave-vector for the lower (plain symbols) and upper (open symbols) branches of Fig. 11(b). Insert: zoom of the plot near the gap region. The same colors have been used in all plots.

Metrics