Abstract

We propose a surface-emitted cavity configuration for a terahertz-wave parametric oscillator that allows THz wave emission perpendicular to the crystal surface without any output coupler. The oscillating idler and pump waves are reflected at the surface of a nonlinear crystal in a single resonance cavity, satisfying the noncollinear phase-matching condition. The radiated THz wave has a Gaussian profile. The measured beam quality factors (M2) were 1.15 and 1.25 in the horizontal and vertical directions, respectively. The measured tunable range was 0.8-2.74 THz. A test of transmission imaging using a test pattern was demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2549
    [CrossRef] [PubMed]
  2. T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).
  3. M. A. Piestrup, R. N. Fleming, and R. H. Pantel, "Continuously tunable submillimeter wave source," Appl. Phys. Lett., 26, 418-421 (1975).
    [CrossRef]
  4. K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett., 68, 2483-2485 (1996).
    [CrossRef]
  5. A. G. Stepanov, J. Hebling, J. Kuhl, "Efficient generation of subpico second terahertz radiation by phase matchied optical rectification using ultra short laser pulses with tilted pulse front," Appl. Phys. Lett. 83, 3000-3002 (2003).
    [CrossRef]
  6. Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
    [CrossRef]
  7. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426, (2001).
    [CrossRef]
  8. Y. Avetisyan, Y. Sasaki and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).
    [CrossRef]
  9. Y. Avetisyan and K. N. Kocharian, " Submillimeter wave surface-emitting difference frequency generation in periodically poled lithium niobate waveguide," in Proceedings of the 1999 International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 1999), 165-168.
  10. C. Weiss, G. Torosyan, Y. Avetisyan and R. Beigang, "Generation of tunable narrow-band surface-emitted terahertz parametric radiation in periodically pole lithium niobete," Opt. Lett. 26, 563-565, (2001).
    [CrossRef]
  11. Y. Sasaki, A. Yuri, K. Kawase and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
    [CrossRef]
  12. K. Kawase, J. Shikata, H. Ito, "Terahertz wave parametric source (Invited Review)," J. Phys. D: Appl. Phys., 35, 1-14 (2002).
    [CrossRef]
  13. K. Imai, K. Kawase, and H. Ito, "A frequency-agile terahertz-wave parametric oscillator," Opt. Express 8, 699-704 (2001).http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-13-699
    [CrossRef] [PubMed]
  14. A. Stepanov, J. Kuhl, I. Kozma, E. Riedle, G. Almási, and J. Hebling, "Scaling up the energy of THz pulses created by optical rectification," Opt. Express 13, 5762-5768 (2005).http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5762
    [CrossRef] [PubMed]
  15. T. F. Johnston, "Beam propagation (M2) Measurement made as easy as it gets: the four-cuts method," Appl. Opt. 37, 4840-4850 (1998).
    [CrossRef]

2005 (1)

2003 (3)

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2549
[CrossRef] [PubMed]

T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).

A. G. Stepanov, J. Hebling, J. Kuhl, "Efficient generation of subpico second terahertz radiation by phase matchied optical rectification using ultra short laser pulses with tilted pulse front," Appl. Phys. Lett. 83, 3000-3002 (2003).
[CrossRef]

2002 (2)

Y. Sasaki, A. Yuri, K. Kawase and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

K. Kawase, J. Shikata, H. Ito, "Terahertz wave parametric source (Invited Review)," J. Phys. D: Appl. Phys., 35, 1-14 (2002).
[CrossRef]

2001 (4)

2000 (1)

Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

1998 (1)

1996 (1)

K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett., 68, 2483-2485 (1996).
[CrossRef]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantel, "Continuously tunable submillimeter wave source," Appl. Phys. Lett., 26, 418-421 (1975).
[CrossRef]

Almási, G.

Avetisyan, Y.

Y. Avetisyan, Y. Sasaki and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).
[CrossRef]

C. Weiss, G. Torosyan, Y. Avetisyan and R. Beigang, "Generation of tunable narrow-band surface-emitted terahertz parametric radiation in periodically pole lithium niobete," Opt. Lett. 26, 563-565, (2001).
[CrossRef]

Beigang, R.

DeCamp, M.

Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Dekorsky, T.

T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantel, "Continuously tunable submillimeter wave source," Appl. Phys. Lett., 26, 418-421 (1975).
[CrossRef]

Galvanauskas, A.

Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Hebling, J.

A. Stepanov, J. Kuhl, I. Kozma, E. Riedle, G. Almási, and J. Hebling, "Scaling up the energy of THz pulses created by optical rectification," Opt. Express 13, 5762-5768 (2005).http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5762
[CrossRef] [PubMed]

A. G. Stepanov, J. Hebling, J. Kuhl, "Efficient generation of subpico second terahertz radiation by phase matchied optical rectification using ultra short laser pulses with tilted pulse front," Appl. Phys. Lett. 83, 3000-3002 (2003).
[CrossRef]

Helm, M.

T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).

Imai, K.

Inoue, H.

Ito, H.

K. Kawase, J. Shikata, H. Ito, "Terahertz wave parametric source (Invited Review)," J. Phys. D: Appl. Phys., 35, 1-14 (2002).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

K. Imai, K. Kawase, and H. Ito, "A frequency-agile terahertz-wave parametric oscillator," Opt. Express 8, 699-704 (2001).http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-13-699
[CrossRef] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426, (2001).
[CrossRef]

Y. Avetisyan, Y. Sasaki and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett., 68, 2483-2485 (1996).
[CrossRef]

Johnston, T. F.

Kawase, K.

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003).http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-20-2549
[CrossRef] [PubMed]

K. Kawase, J. Shikata, H. Ito, "Terahertz wave parametric source (Invited Review)," J. Phys. D: Appl. Phys., 35, 1-14 (2002).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

K. Imai, K. Kawase, and H. Ito, "A frequency-agile terahertz-wave parametric oscillator," Opt. Express 8, 699-704 (2001).http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-13-699
[CrossRef] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426, (2001).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett., 68, 2483-2485 (1996).
[CrossRef]

Keilman, F.

T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).

Kozma, I.

Kuhl, J.

A. Stepanov, J. Kuhl, I. Kozma, E. Riedle, G. Almási, and J. Hebling, "Scaling up the energy of THz pulses created by optical rectification," Opt. Express 13, 5762-5768 (2005).http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-15-5762
[CrossRef] [PubMed]

A. G. Stepanov, J. Hebling, J. Kuhl, "Efficient generation of subpico second terahertz radiation by phase matchied optical rectification using ultra short laser pulses with tilted pulse front," Appl. Phys. Lett. 83, 3000-3002 (2003).
[CrossRef]

Lee, Y. S.

Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Maeda, T.

Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Minamide, H.

Norris, T. B.

Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Ogawa, Y.

Pantel, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantel, "Continuously tunable submillimeter wave source," Appl. Phys. Lett., 26, 418-421 (1975).
[CrossRef]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantel, "Continuously tunable submillimeter wave source," Appl. Phys. Lett., 26, 418-421 (1975).
[CrossRef]

Riedle, E.

Sasaki, Y.

Y. Sasaki, A. Yuri, K. Kawase and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).
[CrossRef]

Sato, M.

K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett., 68, 2483-2485 (1996).
[CrossRef]

Seidel, W.

T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).

Shikata, J.

K. Kawase, J. Shikata, H. Ito, "Terahertz wave parametric source (Invited Review)," J. Phys. D: Appl. Phys., 35, 1-14 (2002).
[CrossRef]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, "Arrayed silicon prism coupler for a THz-wave parametric oscillator," Appl. Opt. 40, 1423-1426, (2001).
[CrossRef]

Stepanov, A.

Stepanov, A. G.

A. G. Stepanov, J. Hebling, J. Kuhl, "Efficient generation of subpico second terahertz radiation by phase matchied optical rectification using ultra short laser pulses with tilted pulse front," Appl. Phys. Lett. 83, 3000-3002 (2003).
[CrossRef]

Taniuchi, T.

K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett., 68, 2483-2485 (1996).
[CrossRef]

Torosyan, G.

Watanabe, Y.

Weiss, C.

Yakovlev, V. A.

T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).

Yuri, A.

Y. Sasaki, A. Yuri, K. Kawase and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

Y. Avetisyan, Y. Sasaki and H. Ito, "Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide," Appl. Phys. B 73, 511-514 (2001).
[CrossRef]

Appl. Phys. Lett. (5)

M. A. Piestrup, R. N. Fleming, and R. H. Pantel, "Continuously tunable submillimeter wave source," Appl. Phys. Lett., 26, 418-421 (1975).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Appl. Phys. Lett., 68, 2483-2485 (1996).
[CrossRef]

A. G. Stepanov, J. Hebling, J. Kuhl, "Efficient generation of subpico second terahertz radiation by phase matchied optical rectification using ultra short laser pulses with tilted pulse front," Appl. Phys. Lett. 83, 3000-3002 (2003).
[CrossRef]

Y. S. Lee, T. Maeda, M. DeCamp, T. B. Norris, and A. Galvanauskas, "Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate," Appl. Phys. Lett. 77, 1244-1246 (2000).
[CrossRef]

Y. Sasaki, A. Yuri, K. Kawase and H. Ito, "Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal," Appl. Phys. Lett. 81, 3323-3325 (2002).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

K. Kawase, J. Shikata, H. Ito, "Terahertz wave parametric source (Invited Review)," J. Phys. D: Appl. Phys., 35, 1-14 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. Dekorsky, V. A. Yakovlev, W. Seidel, M. Helm; and F. Keilman, "Infrared-phonon-polariton resonance of the nonlinear suspectibility in GaAs," Phys. Rev. Lett. 90, 05508 (2003).

Other (1)

Y. Avetisyan and K. N. Kocharian, " Submillimeter wave surface-emitting difference frequency generation in periodically poled lithium niobate waveguide," in Proceedings of the 1999 International Conference on Transparent Optical Networks (Institute of Electrical and Electronics Engineering, Piscataway, N.J., 1999), 165-168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic beam diagram of the pump, idler, and THz waves for the perpendicularly generation of 1.5 THz and the noncollinear phase matching condition. kP , ki and kT show the wave vectors for pump, idler, and THz waves, respectively. (b) Schematic diagram of a Nd:YAG laser-pumped surface-emitted THz-wave parametric oscillator. M1, M2: Dielectric-coated high-reflection mirrors for the idler resonance.

Fig. 2.
Fig. 2.

Measured THz-wave output energies of a surface-emitted TPO for the incident pump energy at 20.3 mJ/pulse.

Fig. 3.
Fig. 3.

(a) Two-dimensional beam energy distribution measured at 22 mm from the output surface. (b) Beam pattern of the THz wave in the horizontal (upper) and vertical (lower) directions.

Fig. 4.
Fig. 4.

Beam spot size dependence on the THz-wave propagation axis. Filled circle and open square show measurements on the horizontal and vertical axes, respectively.

Fig. 5.
Fig. 5.

Layout of the test sample, line and spaces, (a) and THz-wave pulse energy transmittance. The width of the line and spaces are 200, 500, and 1000 μm.

Metrics