Abstract

We present small-signal response measurements on all-optical switches based on a single SOA followed by an optical filter. Both asymmetric MZI and band-pass type filters are investigated and theoretical predictions of a large modulation bandwidth enhancing effect are verified. The small-signal measurements of the DISC switch (SOA and asymmetric MZI) are the first of their kind.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "160 Gb/s SOA-based wavelength converter assisted by an optical bandpass filter," Technical Digest of OFC 2005, PDP 17, Anaheim, (2005)
    [CrossRef]
  2. Y. Ueno, S. Nakamura, and K. Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40-160 GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573 (2002)
    [CrossRef]
  3. J. Leuthold, D. M. Maron, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, "All-optical wavelength conversion using a pulse reformatting optical filter," J. Lightwave Technol. 22, 186 (2004)
    [CrossRef]
  4. M. L. Nielsen, and J. Mørk, "Increasing the modulation bandwidth of semiconductor optical amplifier based switches using optical filtering," J. Opt. Soc. Am. B. 21, 1606 (2004)
    [CrossRef]
  5. M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches," Opt. Express 13, 5080-5086 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5080
    [CrossRef]
  6. M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, "Reduction of nonlinear patterning effects in SOA-based all-optical switches using optical filtering," Technical Digest of OFC (Optical Society of America 2005), paper OThE7, Anaheim, (2005).
  7. M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
    [CrossRef]

2005 (1)

2004 (2)

J. Leuthold, D. M. Maron, S. Cabot, J. J. Jaques, R. Ryf, and C. R. Giles, "All-optical wavelength conversion using a pulse reformatting optical filter," J. Lightwave Technol. 22, 186 (2004)
[CrossRef]

M. L. Nielsen, and J. Mørk, "Increasing the modulation bandwidth of semiconductor optical amplifier based switches using optical filtering," J. Opt. Soc. Am. B. 21, 1606 (2004)
[CrossRef]

2003 (1)

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
[CrossRef]

2002 (1)

Cabot, S.

Dagens, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
[CrossRef]

Giles, C. R.

Jaques, J. J.

Lavigne, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
[CrossRef]

Leuthold, J.

Maron, D. M.

Mørk, J.

Nakamura, S.

Nielsen, M. L.

M. L. Nielsen, J. Mørk, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Theoretical and experimental study of fundamental differences in the noise suppression of high-speed SOA-based all-optical switches," Opt. Express 13, 5080-5086 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-5080
[CrossRef]

M. L. Nielsen, and J. Mørk, "Increasing the modulation bandwidth of semiconductor optical amplifier based switches using optical filtering," J. Opt. Soc. Am. B. 21, 1606 (2004)
[CrossRef]

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
[CrossRef]

Ryf, R.

Sakaguchi, J.

Suzuki, R.

Tajima, K.

Ueno, Y.

IEE Electron. Lett. (1)

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving wavelength conversion at 40 Gb/s using band-pass filtering," IEE Electron. Lett. 39, 1334 (2003).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

M. L. Nielsen, and J. Mørk, "Increasing the modulation bandwidth of semiconductor optical amplifier based switches using optical filtering," J. Opt. Soc. Am. B. 21, 1606 (2004)
[CrossRef]

Opt. Express (1)

Other (2)

M. L. Nielsen, J. Mørk, J. Sakaguchi, R. Suzuki, and Y. Ueno, "Reduction of nonlinear patterning effects in SOA-based all-optical switches using optical filtering," Technical Digest of OFC (Optical Society of America 2005), paper OThE7, Anaheim, (2005).

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "160 Gb/s SOA-based wavelength converter assisted by an optical bandpass filter," Technical Digest of OFC 2005, PDP 17, Anaheim, (2005)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup for small-signal measurements of switch based on an SOA and a filter. (b) Implementation of AMZI filter.

Fig. 2.
Fig. 2.

Normalized carrier density response (CDR) and small-signal frequency response (SSFR) for DISC for different Φ0 values. Markers are measurements and dashed curves are theoretical, corresponding to α=8.0.

Fig. 3.
Fig. 3.

(a) Optimum phase bias vs. τ for different wavelengths. (b) Optimum AMZI transfer functions for τ=2,5,10 ps, with indication of identical slope at λ=λP=1550 nm

Fig. 4.
Fig. 4.

(a) BPF power transfer function (left axis) and corresponding slope (right axis). (b) Normalized CDR and SSFR for switch consisting of SOA and BPF in (a) for different BPF detunings. (c) 10 GHz large-signal response using same parameters as in (b) for different BPF detunings.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

τ e 1 tan ( Φ 0 f / 2 ) = 2 ατ
T N AMZ ( Ω ) = 0.5 T N CDR ( Ω ) [ ( 1 + e j Ωτ ) γ ( 1 e j Ωτ ) ]
d log | H ( λ ) | 2 | λ = λ P = ± 40 ln ( 10 ) 10 9 πc τ e λ P 2 α ( dB / nm )

Metrics