Abstract

Optical devices were fabricated in fused silica using the femtosecond direct write technique. We found that the transmission of light through directly written waveguides, whether straight or curved, can be increased by writing waveguides using circularly rather than linearly polarised radiation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref] [PubMed]
  2. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
    [Crossref]
  3. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing,” Opt. Express 10, 645–652 (2002).
    [PubMed]
  4. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
    [Crossref] [PubMed]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [Crossref]
  6. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [Crossref] [PubMed]
  7. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
    [Crossref]
  8. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987–2989 (2006).
    [Crossref] [PubMed]
  9. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
    [Crossref] [PubMed]
  10. I. Mansour and F. Caccavale, “An Improved Procedure to Calculate the Refractive Index Profile from the Measured Near-Field Intensity,” J. Lightwave Technol. 14, 423–428 (1996).
    [Crossref]
  11. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005).
    [Crossref] [PubMed]

2006 (3)

2005 (2)

2003 (2)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

2002 (1)

1998 (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
[Crossref]

1996 (2)

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

I. Mansour and F. Caccavale, “An Improved Procedure to Calculate the Refractive Index Profile from the Measured Near-Field Intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

Ams, M.

Arai, A. Y.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Bovatsek, J.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Caccavale, F.

I. Mansour and F. Caccavale, “An Improved Procedure to Calculate the Refractive Index Profile from the Measured Near-Field Intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Davis, K. M.

Eaton, S. M.

Fujimoto, J. G.

Herman, P. R.

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Ippen, E. P.

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Kowalevicz, A. M.

Mansour, I.

I. Mansour and F. Caccavale, “An Improved Procedure to Calculate the Refractive Index Profile from the Measured Near-Field Intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

Marshall, G. D.

Minoshima, K.

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref] [PubMed]

Nejadmalayeri, A. H.

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Shah, L.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Spence, D. J.

Sugimoto, N.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

Withford, M. J.

Yoshino, F.

Zhang, H.

Appl. Phys. A (2)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, “Femtosecond waveguide writing: a new avenue to threedimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

J. Lightwave Technol. (1)

I. Mansour and F. Caccavale, “An Improved Procedure to Calculate the Refractive Index Profile from the Measured Near-Field Intensity,” J. Lightwave Technol. 14, 423–428 (1996).
[Crossref]

J. Non-Crys. Sol. (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Crys. Sol. 239, 91–95 (1998).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Writing setup used to fabricate optical waveguides.

Fig. 2.
Fig. 2.

Differential Interference Contrast (DIC) microscope images of waveguides fabricated in fused silica using (a) linear parallel polarisation (b) linear perpendicular polarisation and (c) circular polarisation. The k -direction of the laser beam propagation, S -direction of sample translation and E -electric field vector are also shown. Insets show the near-field profile corresponding to each waveguide. The direction of the writing beam with respect to the insets was from top to bottom.

Fig. 3.
Fig. 3.

Insertion loss measured at 1535 nm for waveguides fabricated with various writing beam pulse energies and polarisations. Insets show near-field profiles of waveguides fabricated with corresponding energies. The direction of the writing beam with respect to the insets was from top to bottom.

Fig. 4.
Fig. 4.

Schematic of the curved waveguide fabricated in fused silica using various writing beam polarisations

Tables (1)

Tables Icon

Table 1. Propagation losses for a variety of directly written waveguides. Polarisation angle is relative to the direction of sample translation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W y W x = NA n ln 2 3 for W x > 3 W y .

Metrics