Abstract

The development of microstructured fibres offers the prospect of improved fibre sensing for low refractive index materials such as liquids and gases. A number of approaches are possible. Here we present a new approach to evanescent field sensing, in which both core and cladding are microstructured. The fibre was fabricated and tested, and simulations and experimental results are shown in the visible region to demonstrate the utility of this approach for sensing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  2. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).
    [CrossRef] [PubMed]
  3. P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
    [CrossRef]
  4. P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315–320 (2003).
  5. C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14, 8403–8412 (2006)
    [CrossRef] [PubMed]
  6. H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
    [CrossRef]
  7. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14, 4135–4140 (2006).
    [CrossRef] [PubMed]
  8. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
    [CrossRef]
  9. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
    [CrossRef]
  10. K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005).
    [CrossRef] [PubMed]
  11. E. E. Serebryannikov and A. M. Zheltikov, “Nanomanagement of dispersion, nonlinearity, and gain of photonic-crystal fibers: qualitative arguments of the Gaussian-mode theory and nonpertubative numerical analysis,” J. Opt. Soc. Am. B 23, 1700–1707 (2006).
    [CrossRef]
  12. G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
    [CrossRef]
  13. www.comsol.com.
  14. T.A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–663 (1997).
    [CrossRef] [PubMed]
  15. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003).
    [CrossRef] [PubMed]
  16. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
    [CrossRef]
  17. K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, and J. Riishede, “Coupling Photonic Crystal Fibers,” Optical Fiber Communication Conference and Exhibit, 627–628, OFC 2002.
  18. M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).
  19. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
    [CrossRef]
  20. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27, 842–844 (2002).
    [CrossRef]
  21. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel Fibre,” Opt. Express 13, 3890–3895 (2005).
    [CrossRef] [PubMed]
  22. K. Patil, R. Pawar, and P. Talap, “Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea,” Phys. Chem. Chem. Phys. 2, 4313–4317 (2003).
    [CrossRef]
  23. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
    [CrossRef]
  24. P.G. Lye, M. Boerkamp, A. Ernest, and D.W. Lamb, “Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions,” J. Phys: Conference Series,  15, 262–269 (2005).
    [CrossRef]
  25. V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
    [CrossRef]
  26. B. D. Gupta and S. K Khijwania, “Experimental studies on the response of the fiber optic evanescent field absorption sensor,” Fiber Integrated Opt. 17, 63–73 (1998).
    [CrossRef]

2006 (3)

2005 (5)

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, “Water-core Fresnel Fibre,” Opt. Express 13, 3890–3895 (2005).
[CrossRef] [PubMed]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).
[CrossRef] [PubMed]

K. Saitoh, N. Florous, and M. Koshiba, “Ultra-flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement losses,” Opt. Express 13, 8365–8371 (2005).
[CrossRef] [PubMed]

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

P.G. Lye, M. Boerkamp, A. Ernest, and D.W. Lamb, “Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions,” J. Phys: Conference Series,  15, 262–269 (2005).
[CrossRef]

2004 (3)

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

2003 (4)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

K. Patil, R. Pawar, and P. Talap, “Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea,” Phys. Chem. Chem. Phys. 2, 4313–4317 (2003).
[CrossRef]

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42, 3509–3515 (2003).
[CrossRef] [PubMed]

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315–320 (2003).

2002 (3)

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27, 842–844 (2002).
[CrossRef]

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
[CrossRef]

2001 (1)

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

1998 (1)

B. D. Gupta and S. K Khijwania, “Experimental studies on the response of the fiber optic evanescent field absorption sensor,” Fiber Integrated Opt. 17, 63–73 (1998).
[CrossRef]

1997 (1)

1990 (1)

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Argyros, A.

Austin, E.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Bang, O.

Barton, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Birks, T. A.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

Birks, T.A.

Bjarklev, A.

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13, 5883–5889 (2005).
[CrossRef] [PubMed]

K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, and J. Riishede, “Coupling Photonic Crystal Fibers,” Optical Fiber Communication Conference and Exhibit, 627–628, OFC 2002.

Boerkamp, M.

P.G. Lye, M. Boerkamp, A. Ernest, and D.W. Lamb, “Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions,” J. Phys: Conference Series,  15, 262–269 (2005).
[CrossRef]

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Brückner, S.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
[CrossRef]

Canning, J.

Cordeiro, C. M. B.

Cox, F. M.

Cruz, C. H. Brito

Dakin, J. P.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

de Matos, C. J.

DelMonte, T.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

dos Santos, E. M.

Eggleton, B. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, “Highly tunable birefringent microstructured optical fiber,” Opt. Lett. 27, 842–844 (2002).
[CrossRef]

Emiliyanov, G.

Ernest, A.

P.G. Lye, M. Boerkamp, A. Ernest, and D.W. Lamb, “Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions,” J. Phys: Conference Series,  15, 262–269 (2005).
[CrossRef]

Ferreira, D. S.

Finazzi, V.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

Florous, N.

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Groothoff, N.

Gupta, B. D.

B. D. Gupta and S. K Khijwania, “Experimental studies on the response of the fiber optic evanescent field absorption sensor,” Fiber Integrated Opt. 17, 63–73 (1998).
[CrossRef]

Hale, A.

Henry, G.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Ho, H. L.

Hoiby, P.

Hoo, Y. L.

Hougaard, K. G.

K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, and J. Riishede, “Coupling Photonic Crystal Fibers,” Optical Fiber Communication Conference and Exhibit, 627–628, OFC 2002.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Jensen, J.

Jin, W.

Kerbage, C.

Khijwania, S. K

B. D. Gupta and S. K Khijwania, “Experimental studies on the response of the fiber optic evanescent field absorption sensor,” Fiber Integrated Opt. 17, 63–73 (1998).
[CrossRef]

Knight, J. C.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

T.A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessy single-mode photonic crystal fiber,” Opt. Lett. 22, 961–663 (1997).
[CrossRef] [PubMed]

Knudsen, E.

K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, and J. Riishede, “Coupling Photonic Crystal Fibers,” Optical Fiber Communication Conference and Exhibit, 627–628, OFC 2002.

Kobelke, J.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
[CrossRef]

Koshiba, M.

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

Kumar, P. Suresh

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
[CrossRef]

Lamb, D.W.

P.G. Lye, M. Boerkamp, A. Ernest, and D.W. Lamb, “Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions,” J. Phys: Conference Series,  15, 262–269 (2005).
[CrossRef]

Large, M. C. J.

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14, 4135–4140 (2006).
[CrossRef] [PubMed]

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Lehmann, H.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
[CrossRef]

Libori, S. B.

K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, and J. Riishede, “Coupling Photonic Crystal Fibers,” Optical Fiber Communication Conference and Exhibit, 627–628, OFC 2002.

Lye, P.G.

P.G. Lye, M. Boerkamp, A. Ernest, and D.W. Lamb, “Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions,” J. Phys: Conference Series,  15, 262–269 (2005).
[CrossRef]

Lyytikainen, K.

MacCraith, B. D.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Mägi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

Man, T. P. M.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

Martelli, C.

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Mukasa, K.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Murphy, J. A.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Mutharasan, R.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315–320 (2003).

Nampoori, V. P. N.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
[CrossRef]

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

O’Driscoll, E.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Ortigosa-Blanch, A.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

Patil, K.

K. Patil, R. Pawar, and P. Talap, “Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea,” Phys. Chem. Chem. Phys. 2, 4313–4317 (2003).
[CrossRef]

Pawar, R.

K. Patil, R. Pawar, and P. Talap, “Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea,” Phys. Chem. Chem. Phys. 2, 4313–4317 (2003).
[CrossRef]

Pedersen, L. H.

Petropoulos, P.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Petrovich, M. N.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Pillai, V. N. Sivasankara

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
[CrossRef]

Poletti, F.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Radhakrishnan, P.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
[CrossRef]

Reyes, P.

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Riishede, J.

K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, and J. Riishede, “Coupling Photonic Crystal Fibers,” Optical Fiber Communication Conference and Exhibit, 627–628, OFC 2002.

Ruan, S. C.

Ruddy, V.

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. S.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Schuster, K.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
[CrossRef]

Schwotzer, G.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
[CrossRef]

Serebryannikov, E. E.

Shankar, P. M.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315–320 (2003).

Shi, C.

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

Steinvurzel, P.

Talap, P.

K. Patil, R. Pawar, and P. Talap, “Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea,” Phys. Chem. Chem. Phys. 2, 4313–4317 (2003).
[CrossRef]

Vallabhan, C. P. G.

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
[CrossRef]

van Brakel, A.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

van Eijkelenborg, M. A.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Wadsworth, W. J.

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

Wang, D. N.

Watson, M.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

Westbrook, P. S.

Wiejata, P. J.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315–320 (2003).

Willsch, R.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
[CrossRef]

Windeler, R. S.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Zagari, J.

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Zheltikov, A. M.

Appl. Opt. (1)

Appl. Phys. B (1)

H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterization and applications,” Appl. Phys. B 81, 377–387 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett. 85, 5182–5184 (2004).
[CrossRef]

Fiber Integrated Opt. (1)

B. D. Gupta and S. K Khijwania, “Experimental studies on the response of the fiber optic evanescent field absorption sensor,” Fiber Integrated Opt. 17, 63–73 (1998).
[CrossRef]

J. Appl. Phys. (1)

V. Ruddy, B. D. MacCraith, and J. A. Murphy, “Evanescent wave absorption spectroscopy using multimode fibers,” J. Appl. Phys. 67, 6070–6074 (1990).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

P. Suresh Kumar, C. P. G. Vallabhan, V. P. N. Nampoori, V. N. Sivasankara Pillai, and P. Radhakrishnan, “A fibre optic evanescent wave sensor used for the detection of trace nitrites in water,” J. Opt. A: Pure Appl. Opt. 4, 247–250 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B-Opt. Phys. (1)

W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. S. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B-Opt. Phys. 19, 2148–2155 (2002).
[CrossRef]

J. Phys: Conference Series (1)

P.G. Lye, M. Boerkamp, A. Ernest, and D.W. Lamb, “Investigating the sensitivity of PMMA optical fibres for use as an evanescent field absorption sensor in aqueous solutions,” J. Phys: Conference Series,  15, 262–269 (2005).
[CrossRef]

Meas. Sci. Technol. (2)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15, 1120–1128 (2004).
[CrossRef]

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12, 854–858 (2001).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (1)

G. Barton, M. A. van Eijkelenborg, G. Henry, M. C. J. Large, and J. Zagari, “Fabrication of microstructured polymer optical fibres,” Opt. Fiber Technol. 10, 325–335 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

K. Patil, R. Pawar, and P. Talap, “Self-aggregation of methylene blue in aqueous medium and aqueous solutions of Bu4NBr and urea,” Phys. Chem. Chem. Phys. 2, 4313–4317 (2003).
[CrossRef]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Sens. Actuators (1)

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, “Fluorescent sensing using biconical tapers,” Sens. Actuators B 96, 315–320 (2003).

Other (4)

K. G. Hougaard, A. Bjarklev, E. Knudsen, S. B. Libori, and J. Riishede, “Coupling Photonic Crystal Fibers,” Optical Fiber Communication Conference and Exhibit, 627–628, OFC 2002.

M. N. Petrovich, A. van Brakel, F. Poletti, K. Mukasa, E. Austin, V. Finazzi, P. Petropoulos, E. O’Driscoll, M. Watson, T. DelMonte, T. M. Monro, J. P. Dakin, and D. J. Richardson, “Microstructured fibres for sensing applications,” in Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, H. H. Du, ed., Proc. SPIE6005, 78–92 (2005).

www.comsol.com.

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, and R. Willsch, “Toward photonic crystal fiber based distributed chemosensors,” in 17th International Conference on Optical Fibre SensorsM. Voet, R. Willsch, W. Ecke, J. Jones, and B. Culshaw, eds., Proc. SPIE5855, 419–422 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig.1.
Fig.1.

Polymer (PMMA) microstructured fiber. (a) Fabricated microstructured fiber. White bar indicates 20 µm. (b) Near core power flow, time-average, profile and electric optical field directions (arrows).

Fig. 2.
Fig. 2.

Sensitivity coefficient ‘r(%)’ as a function of wavelength. The marks represent: (▴) fibre with air filled holes (A), ( oe-14-26-13056-i001 ) fibre with water filled holes (B), and (◦) fibre with core holes filled with water and cladding holes filled with air. On the right: white is air, rose is the fibre material (PMMA) and blue is the fluid

Fig. 3.
Fig. 3.

Core diameter D of (a) microstructured core MOF and (b) regular MOF

Fig. 4.
Fig. 4.

Sensitivity coefficient ‘r(%)’ @633nm for a microstructured core MOF [Fig. 3(a)] ( oe-14-26-13056-i002 , oe-14-26-13056-i003 ) and for a regular solid core MOF [Fig. 3(b)] ( oe-14-26-13056-i004 , oe-14-26-13056-i005 ) versus fibre core diameter.

Fig. 5.
Fig. 5.

Coupling Efficiency @ 633nm between a polarized Gaussian optical mode and a fundamental H E 11 x mode propagating in the microstructured fibers. The regular MOF lattice parameters are: (d/Λ) cladding =0.9 and Λ cladding =1 or 6 µm. The microstructured core MOF dimensions are: D=6.4 µm, core hole’s diameter d core =1.75 µm and core pitch Λ core =2.4 µm.

Fig. 6.
Fig. 6.

(a). CCD image of the guided mode. (b). and (c). pictures for both polarizations.

Fig. 7.
Fig. 7.

Optical micrographs of fibre cross section (A – all holes blocked and B – just cladding holes blocked with polymer) and fibre side view (C).

Fig. 8.
Fig. 8.

Absorption coefficient (α) of MeB for several concentrations measured in a 1mm cuvette. Inset shows the linear behavior of ‘α’ versus the dye concentration for the 664 and 612 nm peaks.

Fig. 9.
Fig. 9.

Transmittance signal thought water filled and MeB filled fibre. The inset shows the difference between both plots and the bulk MeB measurement (concentration=3.59 . 10-6).

Fig. 10.
Fig. 10.

Power penetration, at 633 nm, in the water central hole of the manufactured fibre normalized by its value in the interface. Inset: optical mode around central hole with white bar indicating the horizontal axis of the graph.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = Sample Re ( E x H y * E y H x * ) dx dy total Re ( E x H y * E y H x * ) dx dy × 100 .
α molar = f M α M + ( 1 f M ) α D ,
P = P 0 exp ( α d ) ,
Loss ( d B ) = 10 log ( P P 0 ) = 4.34 α d r .

Metrics