Abstract

A novel re-timing, re-amplifying, and re-shaping (3R) regeneration system is proposed to process multiple WDM (wavelength-division-multiplexing) channels simultaneously. Its re-timing capability is investigated by both simulation and experiment with polarization-scrambling method at 10 Gb/s bit rate. Jitter tolerance up to 0.8 UIpp is demonstrated with BER improvement and floor breaking ability.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Inohara, K. Nishimura, M. Tsurusawa, M. Usami, and S. Akiba, "40 Gbit/s transmission with all-optical 3R regeneration using two-stage SOA-based polarization discriminated switch with assist light injection," IEICE Trans. Electron. E87-C, 1106-1114 (2004).
  2. M. Hayashi, T. Otani, H. Tanaka, and M Suzuki, "Analysis on jitter tolerance of optical 3R regenerator," IEEE Photon. Technol. Lett. 15, 1609-1611 (2003).
    [CrossRef]
  3. J. Nakagawa, M. E. Marhic, and L. G. Kazovsky, "All-optical 3R regeneration technique using injection-locking in gain-switched DFB-LD," Electron. Lett. 37, 231-232 (2001).
    [CrossRef]
  4. J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993).
    [CrossRef]
  5. I. Glesk, J. P. Sokoloff, and P. R. Prucnal, "Demonstration of all-optical demultiplexing of TDM Data at 250 Gb/s," Electron. Lett. 30, 339-430 (1994).
    [CrossRef]
  6. E. Granot, R. Zaibel, N. Narkiss, S. Ben-Ezra, H. Chayet, N. Shahar, S. Sternklar, S. Tsadka and P. R. Prucnal, "Tunable all-optical signal regenerator with a semiconductor optical amplifier and a Sagnac loop: principles of operation," J. Opt. Soc. Am. B 22, 2534-2541 (2005).
    [CrossRef]
  7. B. C. Wang, L. Xu L, V. Baby, D. Y. Zhou, R. J. Runser, I. Glesk, and P. R. Prucnal, "Experimental study on the regeneration capability of the terahertz optical asymmetric demultiplexer," Opt. Commun. 199, 83-88 (2001).
    [CrossRef]
  8. D. Y. Zhou, B. C. Wang, and R. J. Runser, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001)
    [CrossRef]

2005 (1)

2003 (1)

M. Hayashi, T. Otani, H. Tanaka, and M Suzuki, "Analysis on jitter tolerance of optical 3R regenerator," IEEE Photon. Technol. Lett. 15, 1609-1611 (2003).
[CrossRef]

2001 (3)

J. Nakagawa, M. E. Marhic, and L. G. Kazovsky, "All-optical 3R regeneration technique using injection-locking in gain-switched DFB-LD," Electron. Lett. 37, 231-232 (2001).
[CrossRef]

B. C. Wang, L. Xu L, V. Baby, D. Y. Zhou, R. J. Runser, I. Glesk, and P. R. Prucnal, "Experimental study on the regeneration capability of the terahertz optical asymmetric demultiplexer," Opt. Commun. 199, 83-88 (2001).
[CrossRef]

D. Y. Zhou, B. C. Wang, and R. J. Runser, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001)
[CrossRef]

1994 (1)

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, "Demonstration of all-optical demultiplexing of TDM Data at 250 Gb/s," Electron. Lett. 30, 339-430 (1994).
[CrossRef]

1993 (1)

J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

Ben-Ezra, S.

Chayet, H.

Glesk, I.

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, "Demonstration of all-optical demultiplexing of TDM Data at 250 Gb/s," Electron. Lett. 30, 339-430 (1994).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

Granot, E.

Hayashi, M.

M. Hayashi, T. Otani, H. Tanaka, and M Suzuki, "Analysis on jitter tolerance of optical 3R regenerator," IEEE Photon. Technol. Lett. 15, 1609-1611 (2003).
[CrossRef]

Kane, M.

J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

Kazovsky, L. G.

J. Nakagawa, M. E. Marhic, and L. G. Kazovsky, "All-optical 3R regeneration technique using injection-locking in gain-switched DFB-LD," Electron. Lett. 37, 231-232 (2001).
[CrossRef]

Marhic, M. E.

J. Nakagawa, M. E. Marhic, and L. G. Kazovsky, "All-optical 3R regeneration technique using injection-locking in gain-switched DFB-LD," Electron. Lett. 37, 231-232 (2001).
[CrossRef]

Nakagawa, J.

J. Nakagawa, M. E. Marhic, and L. G. Kazovsky, "All-optical 3R regeneration technique using injection-locking in gain-switched DFB-LD," Electron. Lett. 37, 231-232 (2001).
[CrossRef]

Narkiss, N.

Otani, T.

M. Hayashi, T. Otani, H. Tanaka, and M Suzuki, "Analysis on jitter tolerance of optical 3R regenerator," IEEE Photon. Technol. Lett. 15, 1609-1611 (2003).
[CrossRef]

Prucnal, P. R.

E. Granot, R. Zaibel, N. Narkiss, S. Ben-Ezra, H. Chayet, N. Shahar, S. Sternklar, S. Tsadka and P. R. Prucnal, "Tunable all-optical signal regenerator with a semiconductor optical amplifier and a Sagnac loop: principles of operation," J. Opt. Soc. Am. B 22, 2534-2541 (2005).
[CrossRef]

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, "Demonstration of all-optical demultiplexing of TDM Data at 250 Gb/s," Electron. Lett. 30, 339-430 (1994).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

Runser, R. J.

D. Y. Zhou, B. C. Wang, and R. J. Runser, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001)
[CrossRef]

Shahar, N.

Sokoloff, J. P.

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, "Demonstration of all-optical demultiplexing of TDM Data at 250 Gb/s," Electron. Lett. 30, 339-430 (1994).
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

Sternklar, S.

Suzuki, M

M. Hayashi, T. Otani, H. Tanaka, and M Suzuki, "Analysis on jitter tolerance of optical 3R regenerator," IEEE Photon. Technol. Lett. 15, 1609-1611 (2003).
[CrossRef]

Tanaka, H.

M. Hayashi, T. Otani, H. Tanaka, and M Suzuki, "Analysis on jitter tolerance of optical 3R regenerator," IEEE Photon. Technol. Lett. 15, 1609-1611 (2003).
[CrossRef]

Tsadka, S.

Wang, B. C.

D. Y. Zhou, B. C. Wang, and R. J. Runser, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001)
[CrossRef]

B. C. Wang, L. Xu L, V. Baby, D. Y. Zhou, R. J. Runser, I. Glesk, and P. R. Prucnal, "Experimental study on the regeneration capability of the terahertz optical asymmetric demultiplexer," Opt. Commun. 199, 83-88 (2001).
[CrossRef]

Zaibel, R.

Zhou, D. Y.

D. Y. Zhou, B. C. Wang, and R. J. Runser, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001)
[CrossRef]

Electron. Lett. (2)

J. Nakagawa, M. E. Marhic, and L. G. Kazovsky, "All-optical 3R regeneration technique using injection-locking in gain-switched DFB-LD," Electron. Lett. 37, 231-232 (2001).
[CrossRef]

I. Glesk, J. P. Sokoloff, and P. R. Prucnal, "Demonstration of all-optical demultiplexing of TDM Data at 250 Gb/s," Electron. Lett. 30, 339-430 (1994).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. Y. Zhou, B. C. Wang, and R. J. Runser, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001)
[CrossRef]

J. P. Sokoloff, P. R. Prucnal, I. Glesk, M. Kane, "A terahertz optical asymmetric demultiplexer (TOAD)," IEEE Photon. Technol. Lett. 5, 787-789 (1993).
[CrossRef]

M. Hayashi, T. Otani, H. Tanaka, and M Suzuki, "Analysis on jitter tolerance of optical 3R regenerator," IEEE Photon. Technol. Lett. 15, 1609-1611 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

B. C. Wang, L. Xu L, V. Baby, D. Y. Zhou, R. J. Runser, I. Glesk, and P. R. Prucnal, "Experimental study on the regeneration capability of the terahertz optical asymmetric demultiplexer," Opt. Commun. 199, 83-88 (2001).
[CrossRef]

Other (1)

R. Inohara, K. Nishimura, M. Tsurusawa, M. Usami, and S. Akiba, "40 Gbit/s transmission with all-optical 3R regeneration using two-stage SOA-based polarization discriminated switch with assist light injection," IEICE Trans. Electron. E87-C, 1106-1114 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Simultaneous WDM 3R regeneration

Fig. 2.
Fig. 2.

Signal format at specified locations in the regenerator

Fig. 3.
Fig. 3.

(a) Schematic of a TOAD, (b) calculated phase evolution for CCW and CW pulses, and (c) the corresponding TOAD transmission

Fig. 4.
Fig. 4.

(a) Input and (b) output eye diagrams for 0.2 UIpp timing jitter. (c) BER curve plots for inputs and outputs at different jitter levels

Fig. 5.
Fig. 5.

Signal eye diagrams at different stages thru the 3R regenerator: (a) one-channel NRZ signal at point A, (b) re-timed one-channel RZ signal at point B (the other three channels are turned off), (c) four channels displayed together after bit-interleaving at point C.

Fig. 6.
Fig. 6.

The eye diagram of the NRZ input signal (a) when no jitter is applied and (b) with 0.5 UIpp jitter. The re-timed RZ signal eye diagrams are also shown in (c) and (d). (e) The BER traces at the input and output of the regenerator after re-timing.

Fig. 7.
Fig. 7.

BER measurement plots from input and output of the 3R regenerator when the jitter amplitude is (a) 80 ps, (b) 84 ps, and (c) 88 ps, respectively.

Fig. 8.
Fig. 8.

Converted RF signal eye diagrams measured at the input and output of the 3R regenerator when the jitter amplitude is (a)(c) 80 ps, and (b)(d) 88 ps, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P out ( t ) = P in ( t ) 4 { G c w ( t ) + G ccw ( t ) 2 G c w ( t ) G ccw ( t ) cos ( ϕ cw ( t ) ϕ ccw ( t ) ) }
ω ( T ) = ( L eff L NL ) T U 0 T 2

Metrics