Abstract

We demonstrate a solid-core ytterbium-doped photonic bandgap fiber laser passively mode-locked with a semiconductor saturable absorber. Gain and anomalous dispersion simultaneously provided by the photonic crystal fiber allow for a compact subpicosecond soliton oscillator. We also discuss the effect of higher-order dispersion in photonic bandgap fiber on laser performance.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Lim, F. Ö. Ilday, and F. W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002)
    [PubMed]
  2. A. Isomäki and O. G. Okhotnikov, "All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber," Opt. Express 14, 4368-4373 (2006)
    [CrossRef] [PubMed]
  3. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003)
    [CrossRef] [PubMed]
  4. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002)
    [CrossRef]
  5. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004)
    [CrossRef] [PubMed]
  6. R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," IEEE J. Lightwave. Technol. 17, 2138-2141 (1999)
    [CrossRef]
  7. W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
    [CrossRef]
  8. K. Furusawa, T. M. Monro, P. Petropoulos, and D.J. Richardson, "Modelocked laser based on ytterbium doped holey fibre," Electron. Lett. 37, 560-561 (2001)
    [CrossRef]
  9. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express 11, 818-823 (2003)
    [CrossRef] [PubMed]
  10. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier," Opt. Express 12, 1313-1319 (2004)
    [CrossRef] [PubMed]
  11. M. Moenster, P. Glas, G. Steinmeyer, and R. Iliew, "Mode-locked Nd-doped microstructured fiber laser," Opt. Express 12, 4523-4528 (2004)
    [CrossRef] [PubMed]
  12. M. Moenster, P. Glas, G. Steinmeyer, R. Iliew, N. Lebedev, R. Wedell, and M. Bretschneider, "Femtosecond Neodymium-doped microstructure fiber laser," Opt. Express 13, 8671-8677 (2005)
    [CrossRef] [PubMed]
  13. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
    [CrossRef] [PubMed]
  14. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1615 (2003)
    [CrossRef]
  15. C. Zhang, G. Kai, Z. Wang, T. Sun, C. Wang, Y. Liu, J. Liu, W. Zhang, S. Yuan, and X. Dong, "Design of tunable bandgap guidance in high-index filled microstructure fibers," J. Opt. Soc. Am. B 23, 782-786 (2006)
    [CrossRef]
  16. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006)
    [CrossRef] [PubMed]
  17. R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, (2006)
    [CrossRef]

2006

2005

2004

2003

2002

2001

K. Furusawa, T. M. Monro, P. Petropoulos, and D.J. Richardson, "Modelocked laser based on ytterbium doped holey fibre," Electron. Lett. 37, 560-561 (2001)
[CrossRef]

2000

W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
[CrossRef]

1999

R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," IEEE J. Lightwave. Technol. 17, 2138-2141 (1999)
[CrossRef]

Abeeluck, A. K.

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Arriaga, J.

W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
[CrossRef]

Bird, D. M.

Bise, R.

Bretschneider, M.

Broeng, J.

Cregan, R. F.

R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," IEEE J. Lightwave. Technol. 17, 2138-2141 (1999)
[CrossRef]

DiGiovanni, D. J.

Dong, X.

Eggleton, B. J.

Furusawa, K.

K. Furusawa, T. M. Monro, P. Petropoulos, and D.J. Richardson, "Modelocked laser based on ytterbium doped holey fibre," Electron. Lett. 37, 560-561 (2001)
[CrossRef]

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

George, A. K.

Glas, P.

Headley, C.

Hedley, T. D.

Her, T. H.

Herda, R.

R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, (2006)
[CrossRef]

Ilday, F. Ö.

Iliew, R.

Isomäki, A.

Jakobsen, C.

Jasapara, J.

Kai, G.

Knight, J. C.

A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006)
[CrossRef] [PubMed]

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004)
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003)
[CrossRef] [PubMed]

W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
[CrossRef]

R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," IEEE J. Lightwave. Technol. 17, 2138-2141 (1999)
[CrossRef]

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Lebedev, N.

Lederer, F.

Liem, A.

Lim, H.

Limpert, J.

Litchinitser, N. M.

Liu, J.

Liu, Y.

Luan, F.

Moenster, M.

Monro, T. M.

K. Furusawa, T. M. Monro, P. Petropoulos, and D.J. Richardson, "Modelocked laser based on ytterbium doped holey fibre," Electron. Lett. 37, 560-561 (2001)
[CrossRef]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Nolte, S.

Okhotnikov, O. G.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Pearce, G. J.

Petersson, A.

Petropoulos, P.

K. Furusawa, T. M. Monro, P. Petropoulos, and D.J. Richardson, "Modelocked laser based on ytterbium doped holey fibre," Electron. Lett. 37, 560-561 (2001)
[CrossRef]

Reeves, W. H.

W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
[CrossRef]

Reich, M.

Richardson, D.J.

K. Furusawa, T. M. Monro, P. Petropoulos, and D.J. Richardson, "Modelocked laser based on ytterbium doped holey fibre," Electron. Lett. 37, 560-561 (2001)
[CrossRef]

Roberts, P. J.

R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," IEEE J. Lightwave. Technol. 17, 2138-2141 (1999)
[CrossRef]

Russell, P. St. J.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004)
[CrossRef] [PubMed]

W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
[CrossRef]

R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," IEEE J. Lightwave. Technol. 17, 2138-2141 (1999)
[CrossRef]

Schreiber, T.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Steinmeyer, G.

Sun, T.

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Tünnermann, A.

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Vienne, G.

Wadworth, W. J.

W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
[CrossRef]

Wang, A.

Wang, C.

Wang, Z.

Wedell, R.

Windeler, R.

Wise, F. W.

Yuan, S.

Zellmer, H.

Zhang, C.

Zhang, W.

Electron. Lett.

W. J. Wadworth, J. C. Knight, W. H. Reeves, P. St. J. Russell, and J. Arriaga, "Yb3+-doped photonic crystal fibre laser," Electron. Lett. 36, 1452-1454 (2000)
[CrossRef]

K. Furusawa, T. M. Monro, P. Petropoulos, and D.J. Richardson, "Modelocked laser based on ytterbium doped holey fibre," Electron. Lett. 37, 560-561 (2001)
[CrossRef]

R. Herda, A. Isomäki, and O. G. Okhotnikov, "Soliton sidebands in photonic bandgap fibre lasers," Electron. Lett. 42, (2006)
[CrossRef]

IEEE J. Lightwave. Technol.

R. F. Cregan, J. C. Knight, P. St. J. Russell, and P. J. Roberts, "Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber," IEEE J. Lightwave. Technol. 17, 2138-2141 (1999)
[CrossRef]

J. Opt. Soc. Am. B

Nature

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003)
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Laser setup with Yb-PBG fiber. PBS: polarizing beam splitter, λ/2: half-wave plate, WDM: pump/signal multiplexer, HR mirror: high reflectivity mirror.

Fig. 2.
Fig. 2.

Dispersion of the whole fiber cavity and the transmission spectrum of the 2nd order bandgap of the Yb-PBG fiber. The inset shows the cross-sectional view of the fiber

Fig. 3.
Fig. 3.

Amplified spontaneous emission from the Yb-PBG fiber.

Fig. 4.
Fig. 4.

Mode-locked pulse train (10 ns/div). The spikes at the end of the pulses are artifacts of detection electronics.

Fig. 5.
Fig. 5.

Mode-locked pulse spectrum. Inset: measured intensity autocorrelation.

Fig. 6.
Fig. 6.

Pulse spectra for different cavity dispersions. The lengths of the Yb-PBG fiber and the standard single mode fiber are (a) 0.35 m and 1.0 m, (b) 0.35 m and 0.8 m, (c) 0.27 m and 0.47 m, respectively. Some asymmetry in the soliton pulse spectra can be expected for different values of cavity dispersion, as discussed in the text. The difference in noise floor between the curves is due to variations in the sensitivity level of the optical spectrum analyzer. It should be noted that spectra are offset arbitrarily in respect of Y-axis for clarity.

Metrics