Abstract

The gain dynamics of a semiconductor optical amplifier (SOA) were measured using pump-probe techniques for the amplification of 750 fs pulses, 6.5 ps pulses and multiwavelength pulses, obtained from an external cavity semiconductor mode-locked laser. Furthermore, the intracavity gain dynamics of an external cavity semiconductor mode-locked laser was measured under multiwavelength operation. The experimental results show how the inherent chirp in pulses from external cavity semiconductor mode-locked lasers result in a slow gain depletion without significant fast gain dynamics. This mitigates gain competition between wavelength channels and nonlinearities in the gain media (SOA), enabling the multiwavelength operation of external cavity semiconductor mode-locked lasers. Numerical simulations support the experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Chai, "1.36-Tb/s Spectral Slicing Source Based on a Cr4+-YAG Femtosecond Laser," J. Lightwave Technol. 23, 1319-1324 (2005).
    [CrossRef]
  2. J.-P. Blondel, "Massive WDM Systems: Recent developments and future prospects," in Proceedings of IEEE 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 2001), pp 50-53.
  3. B. Mukherjee, "WDM Optical Communication Networks: Progress and Challenges," IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
    [CrossRef]
  4. S. S. Wagner and T. E. Chapuran, "Broadband high-density WDM transmission using superluminescent diodes", Electron. Lett. 26, 696-697 (1990).
    [CrossRef]
  5. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
    [CrossRef]
  6. O. Boyraz, J. Kim, M. N. Islam, F Coppinger and B. Jalali, "10 Gb/s Multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in Fibers," J. Lightwave Technol. 18, 2167-2175 (2000).
    [CrossRef]
  7. L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999).
    [CrossRef]
  8. H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
    [CrossRef]
  9. I. Nitta, J. Abeles, and P. J. Delfyett, "Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser," Appl. Opt. 39, 6799-6805 (2000).
    [CrossRef]
  10. P. J. Delfyett, C. DePriest, and T. Yilmaz, "Signal processing at the speed of lightwaves," IEEE Circuit.Devic. 18, 28-35 (2002).
    [CrossRef]
  11. M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 Channels X 6 Ghz from a Multiwavelength Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 15, 501-503 (2003).
    [CrossRef]
  12. G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988).
    [CrossRef]
  13. P. W. Smith and Y. Silberberg, "Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities," J. Opt. Soc. Am. B 2, 1228-1236 (1985).
    [CrossRef]
  14. P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
    [CrossRef]
  15. B. Resan, L. C. Archundia, and P. J. Delfyett, "FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser," IEEE Photon. Technol. Lett. 17, 1384-1386 (2005).
    [CrossRef]
  16. E. B. Treacy, "Optical Pulse Compression with Diffraction Gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
    [CrossRef]
  17. K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
    [CrossRef]
  18. G. P. Agrawal and N. A. Olsson, "Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
    [CrossRef]
  19. S. Gee, R. Coffie, and P. J. Delfyett, "Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers", Appl. Phys. Lett. 71, 2569-2571 (1997).
    [CrossRef]

2005 (2)

B. Resan, L. C. Archundia, and P. J. Delfyett, "FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser," IEEE Photon. Technol. Lett. 17, 1384-1386 (2005).
[CrossRef]

Y. J. Chai, "1.36-Tb/s Spectral Slicing Source Based on a Cr4+-YAG Femtosecond Laser," J. Lightwave Technol. 23, 1319-1324 (2005).
[CrossRef]

2003 (1)

M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 Channels X 6 Ghz from a Multiwavelength Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 15, 501-503 (2003).
[CrossRef]

2002 (1)

P. J. Delfyett, C. DePriest, and T. Yilmaz, "Signal processing at the speed of lightwaves," IEEE Circuit.Devic. 18, 28-35 (2002).
[CrossRef]

2000 (3)

1999 (1)

L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999).
[CrossRef]

1997 (2)

H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
[CrossRef]

S. Gee, R. Coffie, and P. J. Delfyett, "Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers", Appl. Phys. Lett. 71, 2569-2571 (1997).
[CrossRef]

1994 (1)

K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

1993 (1)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
[CrossRef]

1992 (1)

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

1990 (1)

S. S. Wagner and T. E. Chapuran, "Broadband high-density WDM transmission using superluminescent diodes", Electron. Lett. 26, 696-697 (1990).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, "Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

1988 (1)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988).
[CrossRef]

1985 (1)

1969 (1)

E. B. Treacy, "Optical Pulse Compression with Diffraction Gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Abeles, J.

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, "Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Alphonse, G. A.

M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 Channels X 6 Ghz from a Multiwavelength Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 15, 501-503 (2003).
[CrossRef]

H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
[CrossRef]

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988).
[CrossRef]

Andeadakis, N. C.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

Archundia, L. C.

B. Resan, L. C. Archundia, and P. J. Delfyett, "FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser," IEEE Photon. Technol. Lett. 17, 1384-1386 (2005).
[CrossRef]

Boivin, L.

L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999).
[CrossRef]

Boyraz, O.

Chai, Y. J.

Chapuran, T. E.

S. S. Wagner and T. E. Chapuran, "Broadband high-density WDM transmission using superluminescent diodes", Electron. Lett. 26, 696-697 (1990).
[CrossRef]

Chung, Y. C.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
[CrossRef]

Coffie, R.

S. Gee, R. Coffie, and P. J. Delfyett, "Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers", Appl. Phys. Lett. 71, 2569-2571 (1997).
[CrossRef]

Connolly, J. C.

H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
[CrossRef]

Coppinger, F

Darwish, A. M.

K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Delfyett, P. J.

B. Resan, L. C. Archundia, and P. J. Delfyett, "FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser," IEEE Photon. Technol. Lett. 17, 1384-1386 (2005).
[CrossRef]

M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 Channels X 6 Ghz from a Multiwavelength Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 15, 501-503 (2003).
[CrossRef]

P. J. Delfyett, C. DePriest, and T. Yilmaz, "Signal processing at the speed of lightwaves," IEEE Circuit.Devic. 18, 28-35 (2002).
[CrossRef]

I. Nitta, J. Abeles, and P. J. Delfyett, "Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser," Appl. Opt. 39, 6799-6805 (2000).
[CrossRef]

H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
[CrossRef]

S. Gee, R. Coffie, and P. J. Delfyett, "Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers", Appl. Phys. Lett. 71, 2569-2571 (1997).
[CrossRef]

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

DePriest, C.

P. J. Delfyett, C. DePriest, and T. Yilmaz, "Signal processing at the speed of lightwaves," IEEE Circuit.Devic. 18, 28-35 (2002).
[CrossRef]

DiGiovanni, D. J.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
[CrossRef]

Ettenberg, M.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988).
[CrossRef]

Finaly, J.

H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
[CrossRef]

Florez, L. T.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

Gee, S.

S. Gee, R. Coffie, and P. J. Delfyett, "Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers", Appl. Phys. Lett. 71, 2569-2571 (1997).
[CrossRef]

Gilbert, D. B.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988).
[CrossRef]

Gmitter, T.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

Hall, K. L.

K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Harvey, M. G.

G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988).
[CrossRef]

Heritage, J. P.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

Ippen, E. P.

K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Islam, M. N.

Jalali, B.

Kim, J.

Knox, W. H.

L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999).
[CrossRef]

Lee, J. S.

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
[CrossRef]

Lenz, G.

K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Mielke, M.

M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 Channels X 6 Ghz from a Multiwavelength Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 15, 501-503 (2003).
[CrossRef]

Mukherjee, B.

B. Mukherjee, "WDM Optical Communication Networks: Progress and Challenges," IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
[CrossRef]

Nitta, I.

Nuss, M. C.

L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, "Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

Resan, B.

B. Resan, L. C. Archundia, and P. J. Delfyett, "FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser," IEEE Photon. Technol. Lett. 17, 1384-1386 (2005).
[CrossRef]

Shi, H.

H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
[CrossRef]

Silberberg, Y.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

P. W. Smith and Y. Silberberg, "Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities," J. Opt. Soc. Am. B 2, 1228-1236 (1985).
[CrossRef]

Smith, P. W.

Stoffel, N.

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

Treacy, E. B.

E. B. Treacy, "Optical Pulse Compression with Diffraction Gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Wagner, S. S.

S. S. Wagner and T. E. Chapuran, "Broadband high-density WDM transmission using superluminescent diodes", Electron. Lett. 26, 696-697 (1990).
[CrossRef]

Wegmueller, M.

L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999).
[CrossRef]

Yilmaz, T.

P. J. Delfyett, C. DePriest, and T. Yilmaz, "Signal processing at the speed of lightwaves," IEEE Circuit.Devic. 18, 28-35 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Gee, R. Coffie, and P. J. Delfyett, "Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers", Appl. Phys. Lett. 71, 2569-2571 (1997).
[CrossRef]

Devic. (1)

P. J. Delfyett, C. DePriest, and T. Yilmaz, "Signal processing at the speed of lightwaves," IEEE Circuit.Devic. 18, 28-35 (2002).
[CrossRef]

Electron. Lett. (1)

S. S. Wagner and T. E. Chapuran, "Broadband high-density WDM transmission using superluminescent diodes", Electron. Lett. 26, 696-697 (1990).
[CrossRef]

IEEE J. Quantum Electon. (1)

G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988).
[CrossRef]

IEEE J. Quantum Electron. (3)

P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992).
[CrossRef]

E. B. Treacy, "Optical Pulse Compression with Diffraction Gratings," IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

G. P. Agrawal and N. A. Olsson, "Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

B. Mukherjee, "WDM Optical Communication Networks: Progress and Challenges," IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
[CrossRef]

B. Resan, L. C. Archundia, and P. J. Delfyett, "FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser," IEEE Photon. Technol. Lett. 17, 1384-1386 (2005).
[CrossRef]

M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 Channels X 6 Ghz from a Multiwavelength Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 15, 501-503 (2003).
[CrossRef]

L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999).
[CrossRef]

H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994).
[CrossRef]

Other (1)

J.-P. Blondel, "Massive WDM Systems: Recent developments and future prospects," in Proceedings of IEEE 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 2001), pp 50-53.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Basic external cavity semiconductor mode-locked laser.

Fig. 2.
Fig. 2.

Typical external cavity semiconductor hybrid mode-locked laser pulse spectrum (a) and pulse autocorrelations before () and after (---) dispersion compensation (b).

Fig. 3.
Fig. 3.

Self-phase modulation effects in SOAs for the amplification of pulses longer and shorter than the SOA carrier cooling time and a burst of short pulses.

Fig. 4.
Fig. 4.

Amplification of 6.5 ps pulses in a SOA. Pulse spectrum before amplification (a), pulse spectrum after amplification (b), pulse autocorrelation before () and after (---) amplification (c), and time resolved gain dynamics (d).

Fig. 5.
Fig. 5.

Amplification of 750 fs pulses in a SOA. Pulse spectrum before amplification (a), pulse spectrum after amplification (b), pulse autocorrelation before () and after (---) amplification (c), and time resolved gain dynamics (d).

Fig. 6.
Fig. 6.

Experimental setup used for the measurement of the gain dynamics of an SOA under multiwavelength pulse amplification. I-isolator; MLL-mode-locked laser; BS-beam splitter; DC-dispersion compensator; HWP-half wave plate; P-polarizer; F-filter; C-chopper; SF-spectral filter; PBS-polarization beam splitter; SOA-semiconductor optical amplifier under test; SD-slow detector; S-spectrometer.

Fig. 7.
Fig. 7.

Gain dynamics for the amplification of dispersion compensated multiwavelength pulses in a SOA. Pump spectrum (a), pump spectrum after amplification (b), pump, probe, and pump after amplification autocorrelations (c), and time resolved gain dynamics (d).

Fig. 8.
Fig. 8.

Probe spectrum measured as a function of the delay between the pump and the probe for the amplification of dispersion compensated multiwavelength pulses in a SOA (a) and instantaneous frequency (peak wavelength) and measured SOA gain dynamics (d).

Fig. 9.
Fig. 9.

Gain dynamics for the amplification of non dispersion compensated multiwavelength pulses in a SOA. Pump spectrum (a), pump spectrum after amplification (b), pump, probe, and pump after amplification autocorrelations (c), and time resolved gain dynamics (d).

Fig. 10.
Fig. 10.

Probe spectrum measured as a function of the delay between the pump and the probe for the amplification of non dispersion compensated multiwavelength pulses in a SOA.

Fig. 11.
Fig. 11.

External cavity multiwavelength semiconductor hybrid mode-locked laser intracavity gain dynamics measurement setup. M-mirror, S-slit, G-grating, SF-spectral filter, E-etalon, C-chopper, P-pellicle beam splitter, D-variable delay, SOA-semiconductor optical amplifier, DC-direct current, RF-radio frequency, OC-output coupler, SA-saturable absorber, MLL-external cavity semiconductor mode-locked laser, DGDC dual grating dispersion compensator.

Fig.12. .
Fig.12. .

External cavity multiwavelength semiconductor mode-locked laser pulse spectrum (a), multiwavelength pulse autocorrelation (b) and relative time pulse position for each individual wavelength channel (c).

Fig. 13.
Fig. 13.

Temporal evolution of the SOA gain (a), gain modulated by the bias current (b), normalized gain (the gain depletions due to the amplification of the multiwavelength pulses are circled) (c), and gain depletion close-up (d).

Fig. 14.
Fig. 14.

SOA impulse function.

Fig. 15.
Fig. 15.

Numerical simulations for the amplification of 750 fs pulses, 6.5 ps pulses, dispersion compensated pulses and multiwavelength pulses with dispersion in a SOA.

Fig. 16.
Fig. 16.

Numerical simulation of the intracavity gain dynamics of a multiwavelength external cavity semiconductor mode-locked laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

h ( t ) = u ( t ) [ a 0 e ( t T 0 ) + a 1 ( 1 e ( t T 1 a ) ) e ( t T 1 b ) + a 2 e ( t T 2 ) ] + a 3 δ ( t )
Δ g ( t ) = h ( t t 1 ) I pump ( t 1 ) dt 1
S ( τ ) = I probe ( t τ ) Δ g ( t ) dt

Metrics