Abstract

An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 °C. This approach allows for 100’s of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, "The optical age of silicon," Nature 427,615−618 (2004).
  2. G. T. Reed, and A. P. Knights, Silicon Photonics: An Introduction, (John Wiley, Chichester, West Sussex, 2004).
    [CrossRef]
  3. L. Pavesi, D. J. Lockwood, eds., Silicon Photonics, (Springer-Verlag, Berlin, 2004).
  4. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312−1317 (2000).
    [CrossRef]
  5. R. S. Jacobsen, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
    [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  7. H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
    [CrossRef] [PubMed]
  8. O. Boyraz, and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269 (2004).
    [CrossRef] [PubMed]
  9. R. Espinola, J. Dadap, R. Osgood, Jr., S. McNab, and Y. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004).
    [CrossRef] [PubMed]
  10. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887 (2005).
    [CrossRef] [PubMed]
  11. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
    [CrossRef] [PubMed]
  12. A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
    [CrossRef]
  13. B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
    [CrossRef]
  14. S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
    [CrossRef]
  15. K. Kato, and Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE J. Sel. Tops. Quantum Electron 6, 4-13 (2000)
    [CrossRef]
  16. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
    [CrossRef]
  17. J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, T. Kato, "Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps," IEEE Transactions on Advanced Packaging 24, 569-575 (2001).
    [CrossRef]
  18. C. Monat,  et al., "InP membrane-based microlasers on silicon wafer: microdisks vs. photonic crystal cavities," Conference Proceedings to the 2001Internation Conference on Indium Phosphide Materials FA24, 603-606 (2001)
  19. S. Mino et al. "Planar lightwave circuit platform with coplanar waveguide for opto-electronic hybrid integration," J. Lightwave Technol. 13, 2320 (1995).
    [CrossRef]
  20. H. T. Hattori, "Heterogeneous integration of Microdisk lasers on silicon strip Waveguides for Optical Interconnects," IEEE Photon. Technol. Lett. 18, 223-225 (2006).
    [CrossRef]
  21. H. Park, H., A. W. Fang, S. Kodama, and J. E. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
    [CrossRef] [PubMed]
  22. A. Karim,  et al. "Super lattice barrier 1528-nm vertical-cavity laser with 85oC continuous-wave operation," IEEE Photon. Technol. Lett. 12, 1438, (2000).
    [CrossRef]
  23. D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Topics Quantum Electron. 8, 118, (2002).
    [CrossRef]
  24. H. Boudinov, H. H. Tan, and C. Jagadish, "Electrical isolation of n-type and p-type InP layers by proton bombardment," J. Appl. Phys. 89, 5343-5347 (2001).
    [CrossRef]
  25. B. W. Hakki, and T. L. Paoli, "CW degradation at 300K of GaAs double-heterostructure junction lasers -II: Electronic gain," J. Appl. Phys. 44, 4113-4119 (1973)
    [CrossRef]
  26. N. Margalit, "High-temperature long-wavelength vertical-cavity lasers," Ph.D. Thesis, University of California Santa Barbara, (1998).
  27. R. Ramaswamy, K. N. Sivarajan, Optical networks: a practical perspective, (Academic Press, San Francisco, 2002).
  28. J. H. Marsh, and A. C. Bryce, "Fabrication of photonic integrated circuits using quantum well intermixing," Mater. Sci. Eng. B 24, 272-278, (1994).
    [CrossRef]
  29. J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001).
    [CrossRef]

2006 (2)

H. T. Hattori, "Heterogeneous integration of Microdisk lasers on silicon strip Waveguides for Optical Interconnects," IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

R. S. Jacobsen, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

2005 (3)

H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887 (2005).
[CrossRef] [PubMed]

H. Park, H., A. W. Fang, S. Kodama, and J. E. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
[CrossRef]

2002 (1)

D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Topics Quantum Electron. 8, 118, (2002).
[CrossRef]

2001 (2)

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, T. Kato, "Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps," IEEE Transactions on Advanced Packaging 24, 569-575 (2001).
[CrossRef]

J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001).
[CrossRef]

2000 (5)

K. Kato, and Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE J. Sel. Tops. Quantum Electron 6, 4-13 (2000)
[CrossRef]

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

A. Karim,  et al. "Super lattice barrier 1528-nm vertical-cavity laser with 85oC continuous-wave operation," IEEE Photon. Technol. Lett. 12, 1438, (2000).
[CrossRef]

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312−1317 (2000).
[CrossRef]

1995 (1)

S. Mino et al. "Planar lightwave circuit platform with coplanar waveguide for opto-electronic hybrid integration," J. Lightwave Technol. 13, 2320 (1995).
[CrossRef]

1994 (1)

J. H. Marsh, and A. C. Bryce, "Fabrication of photonic integrated circuits using quantum well intermixing," Mater. Sci. Eng. B 24, 272-278, (1994).
[CrossRef]

1993 (1)

S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

1992 (1)

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
[CrossRef]

1973 (1)

B. W. Hakki, and T. L. Paoli, "CW degradation at 300K of GaAs double-heterostructure junction lasers -II: Electronic gain," J. Appl. Phys. 44, 4113-4119 (1973)
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bowers, J. E.

J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001).
[CrossRef]

Boyraz, O.

Broberg, B.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
[CrossRef]

Bryce, A. C.

J. H. Marsh, and A. C. Bryce, "Fabrication of photonic integrated circuits using quantum well intermixing," Mater. Sci. Eng. B 24, 272-278, (1994).
[CrossRef]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887 (2005).
[CrossRef] [PubMed]

Dadap, J.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Espinola, R.

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Friedrich, E. L.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
[CrossRef]

Gelloz, B.

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

Geske, J.

J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001).
[CrossRef]

Hakki, B. W.

B. W. Hakki, and T. L. Paoli, "CW degradation at 300K of GaAs double-heterostructure junction lasers -II: Electronic gain," J. Appl. Phys. 44, 4113-4119 (1973)
[CrossRef]

Hattori, H. T.

H. T. Hattori, "Heterogeneous integration of Microdisk lasers on silicon strip Waveguides for Optical Interconnects," IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Irrera, A.

A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
[CrossRef]

Itoh, M.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, T. Kato, "Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps," IEEE Transactions on Advanced Packaging 24, 569-575 (2001).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Jalali, B.

Jayaraman, V.

J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001).
[CrossRef]

Karim, A.

A. Karim,  et al. "Super lattice barrier 1528-nm vertical-cavity laser with 85oC continuous-wave operation," IEEE Photon. Technol. Lett. 12, 1438, (2000).
[CrossRef]

Kato, K.

K. Kato, and Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE J. Sel. Tops. Quantum Electron 6, 4-13 (2000)
[CrossRef]

Koshida, N.

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887 (2005).
[CrossRef] [PubMed]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Lombardo, S.

S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

Marsh, J. H.

J. H. Marsh, and A. C. Bryce, "Fabrication of photonic integrated circuits using quantum well intermixing," Mater. Sci. Eng. B 24, 272-278, (1994).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

McNab, S.

Miller, D. A. B.

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312−1317 (2000).
[CrossRef]

Mino, S.

S. Mino et al. "Planar lightwave circuit platform with coplanar waveguide for opto-electronic hybrid integration," J. Lightwave Technol. 13, 2320 (1995).
[CrossRef]

Nilsson, S.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
[CrossRef]

Oberg, M. G.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
[CrossRef]

Okuno, Y. L.

J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001).
[CrossRef]

Osgood, R.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Paoli, T. L.

B. W. Hakki, and T. L. Paoli, "CW degradation at 300K of GaAs double-heterostructure junction lasers -II: Electronic gain," J. Appl. Phys. 44, 4113-4119 (1973)
[CrossRef]

Park, H.

Pasquariello, D.

D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Topics Quantum Electron. 8, 118, (2002).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Reed, G. T.

G. T. Reed, "The optical age of silicon," Nature 427,615−618 (2004).

Rong, H.

H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

Sasaki, J.

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, T. Kato, "Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps," IEEE Transactions on Advanced Packaging 24, 569-575 (2001).
[CrossRef]

Tohmori, Y.

K. Kato, and Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE J. Sel. Tops. Quantum Electron 6, 4-13 (2000)
[CrossRef]

Valette, S.

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
[CrossRef]

Vlasov, Y.

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993).
[CrossRef]

J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312−1317 (2000).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Topics Quantum Electron. 8, 118, (2002).
[CrossRef]

IEEE J. Sel. Tops. Quantum Electron (1)

K. Kato, and Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE J. Sel. Tops. Quantum Electron 6, 4-13 (2000)
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. T. Hattori, "Heterogeneous integration of Microdisk lasers on silicon strip Waveguides for Optical Interconnects," IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

A. Karim,  et al. "Super lattice barrier 1528-nm vertical-cavity laser with 85oC continuous-wave operation," IEEE Photon. Technol. Lett. 12, 1438, (2000).
[CrossRef]

IEEE Transactions on Advanced Packaging (1)

J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, T. Kato, "Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps," IEEE Transactions on Advanced Packaging 24, 569-575 (2001).
[CrossRef]

J. Appl. Phys. (2)

B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000).
[CrossRef]

B. W. Hakki, and T. L. Paoli, "CW degradation at 300K of GaAs double-heterostructure junction lasers -II: Electronic gain," J. Appl. Phys. 44, 4113-4119 (1973)
[CrossRef]

J. Lightwave Technol. (2)

S. Mino et al. "Planar lightwave circuit platform with coplanar waveguide for opto-electronic hybrid integration," J. Lightwave Technol. 13, 2320 (1995).
[CrossRef]

E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992)
[CrossRef]

Mater. Sci. Eng. B (1)

J. H. Marsh, and A. C. Bryce, "Fabrication of photonic integrated circuits using quantum well intermixing," Mater. Sci. Eng. B 24, 272-278, (1994).
[CrossRef]

Nature (5)

R. S. Jacobsen, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005).
[CrossRef] [PubMed]

G. T. Reed, "The optical age of silicon," Nature 427,615−618 (2004).

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000).
[CrossRef] [PubMed]

Nature Materials (1)

S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Physica E (1)

A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003).
[CrossRef]

Other (6)

G. T. Reed, and A. P. Knights, Silicon Photonics: An Introduction, (John Wiley, Chichester, West Sussex, 2004).
[CrossRef]

L. Pavesi, D. J. Lockwood, eds., Silicon Photonics, (Springer-Verlag, Berlin, 2004).

C. Monat,  et al., "InP membrane-based microlasers on silicon wafer: microdisks vs. photonic crystal cavities," Conference Proceedings to the 2001Internation Conference on Indium Phosphide Materials FA24, 603-606 (2001)

N. Margalit, "High-temperature long-wavelength vertical-cavity lasers," Ph.D. Thesis, University of California Santa Barbara, (1998).

R. Ramaswamy, K. N. Sivarajan, Optical networks: a practical perspective, (Academic Press, San Francisco, 2002).

H. Boudinov, H. H. Tan, and C. Jagadish, "Electrical isolation of n-type and p-type InP layers by proton bombardment," J. Appl. Phys. 89, 5343-5347 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). Schematic drawing of the hybrid laser structure with the optical mode superimposed (b) A scanning electron microscope cross sectional image of a fabricated hybrid AlGaInAs-silicon evanescent laser.

Fig. 2.
Fig. 2.

Schematic drawing of an integrated silicon transmitter photonic chip showing multiple evanescent lasers fabricated on a silicon chip, all self aligned to silicon modulators and multiplexed to a single output.

Fig. 3.
Fig. 3.

The single sided fiber coupled laser output as a function of drive current for various operating temperatures.

Fig. 4.
Fig. 4.

The hybrid laser spectrum taken slightly above threshold (70 mA) and well above threshold (100 mA). The y-axis is on a logarithmic scale.

Fig. 5.
Fig. 5.

An infrared image taken from one of the polished facets showing seven c.w. silicon evanescent lasers operating simultaneously.

Metrics