Abstract

One-dimensional (1D) photonic crystals (PC) containing two-layer CdS defects are proposed and fabricated by using electron beam evaporation. Ultrafast nonlinear optical responses were characterized with the ultrafast pump-probe method in both time and spectral domains. Two-photon absorption coefficient enhancement and pump-beam-induced defect mode shift were reported. Both effects are attributed to the light localization in the defect layer of the multilayer structures. Our results demonstrated that defective photonic crystals are good candidates for fabrication of ultrafast all-optical switching devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. I. R. Matias, I. D. Villar, F. J. Arregui, and R. O. Claus, "Development of an optical refractometer by analysis of one-dimensional photonic bandgap structures with defects," Opt. Lett. 28, 1099-1101 (2003).
    [CrossRef] [PubMed]
  3. G. J. Schneider and G. H. Watson, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 83, 5350-5352 (2003).
    [CrossRef]
  4. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures," J. Appl. Phys. 93, 5013-5017 (2003).
    [CrossRef]
  5. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, "Resonance transmission modes in dual-periodical dielectric multilayer films," Appl. Phys. Lett. 82, 4654-4656 (2003).
    [CrossRef]
  6. H. Nemec, L. Duvillaret, F. Quemeneur, and P. Kuzel, "Defect modes caused by twinning in one-dimensional photonic crystals," J. Opt. Soc. Am. B 21, 548-553 (2004).
    [CrossRef]
  7. B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, "Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals," Opt. Lett. 30, 349-351 (2005).
    [CrossRef] [PubMed]
  8. G. H. Ma, S. H. Tang, J. Shen, Z. J. Zhang, and Z. Y. Hua, "Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic bandgap structure," Opt. Lett. 29, 1769-1771 (2004).
    [CrossRef] [PubMed]
  9. R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 84, 1844-1846 (2004).
    [CrossRef]
  10. Yicheng Lai, W. Zhang, L. Zhang, J. A. R. Williams, and I. Bennion, "Optically tunable fiber grating transmission filters," Opt. Lett. 28, 2446-2448 (2003).
    [CrossRef] [PubMed]
  11. Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
    [CrossRef]
  12. T. Hattori, N. Tsurumachi, and H. Nakatsuka, "Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals," J. Opt. Soc. Am. B 14, 348-355 (1997).
    [CrossRef]
  13. G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, "Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states," Appl. Phys. B 80, 359-363 (2005).
    [CrossRef]
  14. N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, "Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures," Jpn. J. Appl. Phys. 38, 6302-6308 (1999).
    [CrossRef]
  15. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
    [CrossRef]
  16. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
    [CrossRef] [PubMed]
  17. S. Radic, N. George, and G. P. Agrawal, "Optical switching in lambda/4-shifted nonlinear periodic structure," Opt. Lett. 19, 1789-1791 (1994).
    [CrossRef] [PubMed]
  18. A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, "Optical switching in a metal-semiconductor-metal waveguide structure," Appl. Phys. Lett. 66, 3401-3403 (1995).
    [CrossRef]
  19. H. G. Winful, J. H. Morburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
    [CrossRef]
  20. W. Chen and D. L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett. 58, 160-163 (1987).
    [CrossRef] [PubMed]
  21. T. G. Brown and B. J. Eggleton, "Bragg solitons and optical switching in nonlinear periodic structures: an historical perspective," Opt. Express 3, 385-388 (1998), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-11-385.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-3-11-385.</a>
    [CrossRef] [PubMed]
  22. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, "All-optical switching in a nonlinear periodical-waveguide structure," Appl. Phys. Lett. 60, 1427-1429 (1992).
    [CrossRef]
  23. J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, "Dispersive optical bistability in stratified structures," Phys. Rev. B 44, 8214-8225 (1991).
    [CrossRef]
  24. X.-Q. Huang and Y. -P. Cui, "Degeneracy and split of defect states in photonic crystals," Chin Phys. Lett. 20, 1721-1723 (2003).
    [CrossRef]
  25. T. D. Krauss and F. W. Wise, "Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS," Appl. Phys. Lett. 65, 1739-1741 (1994).
    [CrossRef]
  26. A. Miller, K. R. Welford and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).

Appl. Phys. B

G. H. Ma, J. Shen, K. Rajiv, S. H. Tang, Z. J. Zhang, and Z. Y. Hua, "Optimization of two-photon absorption enhancement in one-dimensional photonic crystals with defect states," Appl. Phys. B 80, 359-363 (2005).
[CrossRef]

Appl. Phys. Lett.

G. J. Schneider and G. H. Watson, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 83, 5350-5352 (2003).
[CrossRef]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, "Resonance transmission modes in dual-periodical dielectric multilayer films," Appl. Phys. Lett. 82, 4654-4656 (2003).
[CrossRef]

A. E. Bieber, A. F. Prelewitz, T. G. Brown, and R. C. Tiberio, "Optical switching in a metal-semiconductor-metal waveguide structure," Appl. Phys. Lett. 66, 3401-3403 (1995).
[CrossRef]

H. G. Winful, J. H. Morburger, and E. Garmire, "Theory of bistability in nonlinear distributed feedback structures," Appl. Phys. Lett. 35, 379-381 (1979).
[CrossRef]

N. D. Sankey, D. F. Prelewitz, and T. G. Brown, "All-optical switching in a nonlinear periodical-waveguide structure," Appl. Phys. Lett. 60, 1427-1429 (1992).
[CrossRef]

R. Ozaki, Y. Matsuhisa, M. Ozaki, and K. Yoshino, "Nonlinear optical spectroscopy in one-dimensional photonic crystals," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

T. D. Krauss and F. W. Wise, "Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS," Appl. Phys. Lett. 65, 1739-1741 (1994).
[CrossRef]

Ryotaro Ozaki, Yuko Matsuhisa, Masanori Ozaki, and Katsumi Yoshino, "Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer," Appl. Phys. Lett. 84, 1844-1846 (2004).
[CrossRef]

Appl. Phys. Lett. 84,

B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004).
[CrossRef]

Chin Phys. Lett.

X.-Q. Huang and Y. -P. Cui, "Degeneracy and split of defect states in photonic crystals," Chin Phys. Lett. 20, 1721-1723 (2003).
[CrossRef]

J. Appl. Phys.

M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, "Accessing the optical limiting properties of metallo-dielectric photonic bandgap structures," J. Appl. Phys. 93, 5013-5017 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

N. Tsurumaehi, S. Yamashita, N. Muroi, T. Fuji, T. Hattoti, and H. Nakatsuka, "Enhancement of nonlinear optical effect in one-dimensional photonic crystal structures," Jpn. J. Appl. Phys. 38, 6302-6308 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Danlaert, K. Fobelets, I. Veretennicoff, G. Vitran, and R. Reinisch, "Dispersive optical bistability in stratified structures," Phys. Rev. B 44, 8214-8225 (1991).
[CrossRef]

Phys. Rev. Lett.

W. Chen and D. L. Mills, "Gap solitons and the nonlinear optical response of superlattices," Phys. Rev. Lett. 58, 160-163 (1987).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials," Phys. Rev. Lett. 73, 1368-1371 (1994).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Other

A. Miller, K. R. Welford and B. Baino, Nonlinear Optical Materials for Applications in Information Technology (Kluwer, Dordrecht, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The simulated transmission spectra of 1D PC structures of (HL)4D(LD)m(LH)4 with m=1 [Fig. 1(a)] and m=7 [Fig. 1(b)], respectively.

Fig. 2.
Fig. 2.

The simulated transmission spectra of 1D PC structures with two defect layers, i.e., (HL)4DL(HL)nD(LH)4 with n=0, 1, 2, 3, and 7, respectively.

Fig. 3.
Fig. 3.

The measured transmission spectra of 1D PC structures of (HL)4DL(HL)nD(LH)4 with n=2 (black) and 3 (red), respectively. The arrow indicates the wavelength of the pump beam in the experiment.

Fig. 4.
Fig. 4.

Transient transmission changes of probe beam for (HL)4DL(HL)3D(LH)4 PC structure (black) and bulk ZnSe (red) with the incident wavelength of 800 nm. The signal of ZnSe was multiplied by a factor of 0.1 for comparison. The pump intensity is about 1.1 GW/cm2 at the wavelength of 800 nm.

Fig. 5.
Fig. 5.

(a) Spectrum of probe beam before the sample (green); (b) Transmitted spectrum of probe after the sample without pump beam (black); (c) Pump-beam induced transmitted spectrum of probe at zero delay time (red).

Metrics