Abstract

We demonstrate selective fluorescence excitation of specific molecular species in live organisms by using coherent control of two-photon excitation. We have acquired quasi-simultaneous images in live fluorescently-labeled Drosophila embryos by rapid switching between appropriate pulse shapes. Linear combinations of these images demonstrate that a high degree of fluorophore selectivity is attainable through phase-shaping. Broadband phase-shaped excitation opens up new possibilities for single-laser, multiplex, in-vivo fluorescence microscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos

Delphine Débarre, Willy Supatto, Emmanuel Farge, Bruno Moulia, Marie-Claire Schanne-Klein, and Emmanuel Beaurepaire
Opt. Lett. 29(24) 2881-2883 (2004)

Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control

Jennifer P. Ogilvie, Kevin J. Kubarych, Antigoni Alexandrou, and Manuel Joffre
Opt. Lett. 30(8) 911-913 (2005)

Adaptively controlled supercontinuum pulse from a microstructure fiber for two-photon excited fluorescence microscopy

Junji Tada, Taiki Kono, Akira Suda, Hideaki Mizuno, Atsushi Miyawaki, Katsumi Midorikawa, and Fumihiko Kannari
Appl. Opt. 46(15) 3023-3030 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
    [Crossref]
  2. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
    [Crossref]
  3. J. Chen, H. Kawano, Y. Nabekawa, H. Mizuno, A. Miyawaki, T. Tanabe, F. Kannari, and K. Midorikawa, “Selective excitation between two-photon and three-photon fluorescence with engineered cost functions,” Opt. Express 12, 3408–3414 (2004).
    [Crossref] [PubMed]
  4. J. P. Ogilvie, K. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: Applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
    [Crossref] [PubMed]
  5. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
    [Crossref] [PubMed]
  6. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
    [Crossref] [PubMed]
  7. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
    [Crossref] [PubMed]
  8. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
    [Crossref]
  9. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
    [Crossref] [PubMed]
  10. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
    [Crossref]
  11. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
    [Crossref] [PubMed]
  12. M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
    [Crossref] [PubMed]
  13. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 2348–2358 (1997).
    [Crossref]
  14. E. Frumker, D. Oron, D. Mandelik, and Y. Silberberg, “Femtosecond pulse-shape modulation at kilohertz rates,” Opt. Lett. 29, 890–892 (2004).
    [Crossref] [PubMed]
  15. E. Frumker, E. Tal, Y. Silberberg, and S. Majer, “Femtosecond pulse-shape modulation at nanosecond rates”, Opt. Lett. 30, 2796–2798 (2005).
    [Crossref] [PubMed]
  16. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
    [Crossref]
  17. D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila,” J. Cell Biol. 149, 471–490 (2000).
    [Crossref] [PubMed]
  18. E. Wieschaus and C. Nusslein-Volhard, “Drosophila: A practical approach”, Oxford, Oxford University Press (1998).
  19. I. Davis, “Visualizing fluorescence in drosophila - optical detection in thick specimens”. In Protein localization by fluorescence microscopy: A practical approach, Edited by Oxford University Press, 133–162 (2000).
  20. W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
    [Crossref] [PubMed]
  21. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
    [Crossref] [PubMed]
  22. E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
    [Crossref]
  23. P. Tournois: “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Comm. 140, 245–249 (1997).
    [Crossref]
  24. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150 (1984).
    [Crossref] [PubMed]
  25. A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
    [Crossref]
  26. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
    [Crossref] [PubMed]
  27. W. R. Zipfel, R.M. Williams, and W.W. Webb, ldquo;Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
    [Crossref]
  28. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  29. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
    [Crossref] [PubMed]

2005 (4)

J. P. Ogilvie, K. Kubarych, A. Alexandrou, and M. Joffre, “Fourier transform measurement of two-photon excitation spectra: Applications to microscopy and optimal control,” Opt. Lett. 30, 911–913 (2005).
[Crossref] [PubMed]

E. Frumker, E. Tal, Y. Silberberg, and S. Majer, “Femtosecond pulse-shape modulation at nanosecond rates”, Opt. Lett. 30, 2796–2798 (2005).
[Crossref] [PubMed]

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

2004 (5)

E. Frumker, D. Oron, D. Mandelik, and Y. Silberberg, “Femtosecond pulse-shape modulation at kilohertz rates,” Opt. Lett. 29, 890–892 (2004).
[Crossref] [PubMed]

J. Chen, H. Kawano, Y. Nabekawa, H. Mizuno, A. Miyawaki, T. Tanabe, F. Kannari, and K. Midorikawa, “Selective excitation between two-photon and three-photon fluorescence with engineered cost functions,” Opt. Express 12, 3408–3414 (2004).
[Crossref] [PubMed]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
[Crossref] [PubMed]

2003 (4)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R.M. Williams, and W.W. Webb, ldquo;Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

2002 (3)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

2000 (3)

1999 (1)

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
[Crossref]

1998 (2)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

1997 (2)

M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 2348–2358 (1997).
[Crossref]

P. Tournois: “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Comm. 140, 245–249 (1997).
[Crossref]

1996 (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
[Crossref] [PubMed]

1992 (1)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

1984 (1)

Alexandrou, A.

Assion, A.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Baumert, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Beaurepaire, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

Berchner-Pfannschmidt, U.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Bergt, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Bestvater, F.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Brixner, T.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Brouzés, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

Chen, J.

Cheng, Z.

Christie, R.

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Comstock, M.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
[Crossref] [PubMed]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

Dantus, M.

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[Crossref] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Davis, I.

I. Davis, “Visualizing fluorescence in drosophila - optical detection in thick specimens”. In Protein localization by fluorescence microscopy: A practical approach, Edited by Oxford University Press, 133–162 (2000).

Débarre, D.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

Dela Cruz, J. M.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
[Crossref] [PubMed]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[Crossref] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Dugan, M. A.

Edwards, K. A.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila,” J. Cell Biol. 149, 471–490 (2000).
[Crossref] [PubMed]

Farge, E.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

Feurer, T.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Fittinghoff, D. N.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
[Crossref]

Fork, R. L.

Frumker, E.

Gaeta, A. L.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
[Crossref]

Galbraith, C. G.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila,” J. Cell Biol. 149, 471–490 (2000).
[Crossref] [PubMed]

Gerber, G.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Gordon, J. P.

Hacker, M.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Heckel-Pompey, A.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Heikal, A. A.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[Crossref] [PubMed]

Huang, S.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[Crossref] [PubMed]

Hyman, B. T.

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Joffre, M.

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

Kannari, F.

Kawano, H.

Kiefer, B.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Kiehart, D. P.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila,” J. Cell Biol. 149, 471–490 (2000).
[Crossref] [PubMed]

Kubarych, K.

Laude, V.

Lozovoy, V. V.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
[Crossref] [PubMed]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[Crossref] [PubMed]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Majer, S.

Mandelik, D.

Martin, J.-L.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

Martinez, O. E.

Meshulach, D.

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Midorikawa, K.

Millard, A. C.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
[Crossref]

Miyawaki, A.

Mizuno, H.

Montague, R. A.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila,” J. Cell Biol. 149, 471–490 (2000).
[Crossref] [PubMed]

Moulia, B.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

Muller, M.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
[Crossref]

Nabekawa, Y.

Nikitin, A. Y.

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

Nusslein-Volhard, C.

E. Wieschaus and C. Nusslein-Volhard, “Drosophila: A practical approach”, Oxford, Oxford University Press (1998).

Ogilvie, J. P.

Oron, D.

E. Frumker, D. Oron, D. Mandelik, and Y. Silberberg, “Femtosecond pulse-shape modulation at kilohertz rates,” Opt. Lett. 29, 890–892 (2004).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

Pastirk, I.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12, 1061–1066 (2004).
[Crossref] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
[Crossref] [PubMed]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Porwol, T.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Rabitz, H.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

Ranka, J. K.

Rickoll, W. L.

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila,” J. Cell Biol. 149, 471–490 (2000).
[Crossref] [PubMed]

Seyfried, V.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
[Crossref] [PubMed]

Silberberg, Y.

E. Frumker, E. Tal, Y. Silberberg, and S. Majer, “Femtosecond pulse-shape modulation at nanosecond rates”, Opt. Lett. 30, 2796–2798 (2005).
[Crossref] [PubMed]

E. Frumker, D. Oron, D. Mandelik, and Y. Silberberg, “Femtosecond pulse-shape modulation at kilohertz rates,” Opt. Lett. 29, 890–892 (2004).
[Crossref] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Spielmann, C.

Spiess, E.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Squier, J. A.

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
[Crossref]

Stentz, A. J.

Stobrawa, G.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Strehle, M.

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Supatto, W.

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

Tal, E.

Tanabe, T.

Toth, K.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Tournois, P.

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000).
[Crossref]

P. Tournois: “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Comm. 140, 245–249 (1997).
[Crossref]

Tull, J. X.

Verluise, F.

Walowicz, K. A.

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11, 1695–1701 (2003).
[Crossref] [PubMed]

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

Warren, W. S.

Webb, W. W.

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
[Crossref] [PubMed]

Webb, W.W.

W. R. Zipfel, R.M. Williams, and W.W. Webb, ldquo;Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Wieschaus, E.

E. Wieschaus and C. Nusslein-Volhard, “Drosophila: A practical approach”, Oxford, Oxford University Press (1998).

Williams, R. M.

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
[Crossref] [PubMed]

Williams, R.M.

W. R. Zipfel, R.M. Williams, and W.W. Webb, ldquo;Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Windeler, R. S.

Wotzlaw, C.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

Xu, C.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
[Crossref] [PubMed]

Zipfel, W.

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R.M. Williams, and W.W. Webb, ldquo;Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Biophys. J. (1)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82, 2811–2825 (2002).
[Crossref] [PubMed]

J. Cell Biol. (1)

D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, and R. A. Montague, “Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila,” J. Cell Biol. 149, 471–490 (2000).
[Crossref] [PubMed]

J. Chem. Phys. (1)

V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses,” J. Chem. Phys. 118, 3187–3196 (2003).
[Crossref]

J. of Microscopy (2)

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, and T. Porwol, et al., “Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP,” J. of Microscopy 217, 200–204 (2005).
[Crossref]

A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, and A. L. Gaeta, “Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy,” J. of Microscopy 193, 179–181 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (2)

K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, “Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases,” J. Phys. Chem. A 106, 9369–9373 (2002).
[Crossref]

J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, and M. Dantus, “Multiphoton intrapulse interference 3: Probing microscopic chemical environments,” J. Phys. Chem. A 108, 53–58 (2004).
[Crossref]

Nat. Biotech. (1)

W. R. Zipfel, R.M. Williams, and W.W. Webb, ldquo;Nonlinear magic: Multiphoton microscopy in the biosciences,” Nat. Biotech. 21, 1369–1377 (2003).
[Crossref]

Nature (2)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418, 512–514 (2002).
[Crossref] [PubMed]

D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396, 239–242 (1998).
[Crossref]

Opt. Comm. (1)

P. Tournois: “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Comm. 140, 245–249 (1997).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. Lett. (1)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (4)

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, “Use of coherent control methods through scattering biological tissue to achieve functional imaging,” Proc. Natl. Acad. Sci. 101, 16996–17001 (2004).
[Crossref] [PubMed]

W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, and E. Beaurepaire, “In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses,” Proc. Natl. Acad. Sci. 102, 1047–1052 (2005).
[Crossref] [PubMed]

W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. 100, 7075–7080 (2003).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. 93, 10763–10768 (1996).
[Crossref] [PubMed]

Science (1)

A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282, 919–922 (1998).
[Crossref] [PubMed]

Other (2)

E. Wieschaus and C. Nusslein-Volhard, “Drosophila: A practical approach”, Oxford, Oxford University Press (1998).

I. Davis, “Visualizing fluorescence in drosophila - optical detection in thick specimens”. In Protein localization by fluorescence microscopy: A practical approach, Edited by Oxford University Press, 133–162 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) 2PEF ratio of eGFP/yolk, as measured with a narrow-(b) Experimental setup. BS: beamsplitter, PC: prism compressor, PMT: photomultiplier tube. The interferometer, shown within the dashed box, was used only for characterizing the shaped pulses and was otherwise bypassed. (c) Spectral amplitude (solid line) for the pulses used in the experiments, as well as the applied sinusoidal phase for the red (dash-dot) and blue (dotted) phase-shaped pulses. (d) Corresponding SH spectra for the TL (solid), red-shaped (dash-dot) and blue-shaped (dotted) pulses. The TL amplitude has been reduced by a factor of two for easier comparison with the other spectra. The applied phases for the red and blue-shaped pulses were sinusoidal as defined in the text, with parameters A = 25π rad, γ = 0.09 rad/THz for both pulses. The offset values used for the red and blue-tuned pulses were δ = -1.85 rad and δ = -0.1 rad respectively.

Fig. 2.
Fig. 2.

2PEF images of an eGFP labeled Drosophila embryo. (a) Blue-tuned excitation. (b) Red-tuned excitation. (c) Transform limited pulse. These three images are normalized to the fluorescence signal of the vitelline membrane. (d) Linear combination of A and B to isolate the eGFP fluorescence. (e) Linear combination of A and B to isolate the yolk fluorescence. (f) Composite image of C and D to illustrate the good separation between eGFP and yolk fluorescence.

Fig. 3.
Fig. 3.

2PEF signal profiles for the shaped pulses through the section indicated in Fig. 2(C), showing significantly different signal levels in the eGFP and yolk.

Fig. 4.
Fig. 4.

A) 2PEF spectra of yolk and eGFP measured in vivo under 820-nm excitation by recording the descanned epidetected fluorescence filtered using a 15-nm tunable interferential filter (S-60, Schott) . Also shown are the wavelength ranges selected by the emission filters. B1) 2PEF images using blue-filter for TL and B2) blue-shaped pulses. C1) 2PEF images using green-filter for TL and C2) red-shaped (right) pulses. D1) X-profile for TL and D2) shaped pulses with filters at location indicated in B1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( 2 ) ( ω ) 2 E ( ω ) E ( ω ω ) exp [ i { φ ( ω ) + φ ( ω ω ) } ] 2
Γ = R blue R red R blue + R red

Metrics