Abstract

Simultaneous imaging of very early embryonic heart structure and function has technical limitations of spatial and temporal resolution. We have developed a gated technique using optical coherence tomography (OCT) that can rapidly image beating embryonic hearts in four-dimensions (4D), at high spatial resolution (10-15 um), and with a depth penetration of 1.5 - 2.0 mm that is suitable for the study of early embryonic hearts. We acquired data from paced, excised, embryonic chicken and mouse hearts using gated sampling and employed image processing techniques to visualize the hearts in 4D and measure physiologic parameters such as cardiac volume, ejection fraction, and wall thickness. This technique is being developed to longitudinally investigate the physiology of intact embryonic hearts and events that lead to congenital heart defects.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. Belohlavek, D. A. Foley, T. C. Gerber, T. M. Kinter, J. F. Greenleaf and J. B. Seward, "Three and four dimensional cardiovascular ultrasound imaging: A new era for Echocardiography," Mayo Clin. Proc. 68, 221-240 (1993).
    [PubMed]
  2. P. Lanzer, E. Botvinick, N. Schiller, L. Crooks, M. Arakawa, L. Kaufman, P. Davis, R. Herfkens, M. Lipton and C. Higgins, "Cardiac imaging using gated magnetic resonance," Radiology 150, 121-127 (1984).
    [PubMed]
  3. K. Saito, M. Saito, S. Komatu and K. Ohtomo, "Real-time four-dimensional imaging of the heart with multi-detector row CT," Radiographics 23, e8-8 (2003).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  5. T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "Optical Coherence Tomography: a new high-resolution imaging technology to study cardiac development in chick embryos," Circulation 106, 2771-2774 (2002).
    [CrossRef] [PubMed]
  6. C. K. L. Phoon, O. Aristizabal and D. H. Turnball, "Spatial velocity profile in mouse embryonic aorta and doppler-derived volumetric flow: a preliminary model," Am. J. Physiol. Heart Circ. Physiol. 283, H908-H916 (2002).
    [PubMed]
  7. T. M. Yelbuz, X. Zhang, M. A. Choma, H. A. Stadt, M. Zdanowicz, G. A. Johnson and M. L. Kirby, "Approaching cardiac development in three dimensions by magnetic resonance microscopy," Circulation 108, 154-155 (2002).
    [CrossRef]
  8. J. M. Tyszka, S. E. Fraser and R. E. Jacobs, "Magnetic resonance microscopy: recent advances and applications," Curr. Opin. Biotechnol. 16, 93-99 (2005).
    [CrossRef] [PubMed]
  9. E. A. V. Jones, M. H. Baron, S. E. Fraser and M. E. Dickinson, "Measuring hemodynamic changes during mammalian development," Am. J. Physiol. Heart Circ. Physiol. 287, H1561-H1569 (2004).
    [CrossRef] [PubMed]
  10. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590 (1994).
    [CrossRef] [PubMed]
  11. S. Steckelenburg-De Vos, P. Steendijk, N. T. C. Ursem, J. W. Wladimiroff, R. Delfos and R. E. Poelmann, "Systolic and diastolic ventricular function assessed by pressure-volume loops in the stage 21 venous clipped chick embryo," Pediatr. Res. 57, 16-21 (2005).
    [CrossRef]
  12. K. Tobita and B. B. Keller, "Maturation of end-systolic stress-strain relations in chick embryonic myocardium," Am. J. Physiol. Heart Circ. Physiol. 279, H216-H224 (2000).
    [PubMed]
  13. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney and J. G. Fujimoto, "Investigation of developing embryonic morphology using optical coherence tomography," Dev. Biol. 177, 54-64 (1996).
    [CrossRef] [PubMed]
  14. S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney and J. G. Fujimoto, "Imaging developing neural morphology using optical coherence tomography," J. Neurosci. Methods 70, 65-72 (1996).
    [CrossRef] [PubMed]
  15. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
    [CrossRef] [PubMed]
  16. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11, 1650-1658 (2003) <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650>http://www.opticsexpress.org.abstract.cfm?URI=OPEX-11-14-1650</a>.
    [CrossRef] [PubMed]
  17. S. Yazdanfar, M. Kulkarni and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color doppler optical coherence tomography," Opt. Express 1, 424-431 (1997), <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-424>http://www.opticsexpress.org/abstract cfm?URI=OPEX-11-13 424</a>.
    [CrossRef] [PubMed]
  18. M. W. Jenkins, C. J. Pedersen, R. S. Wade, V. Nikolski, Y. Cheng, I. R. Efimov and A. M. Rollins, "Three-dimensional OCT imaging of Endocardial architecture," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII, V. V. Tuchin, J. A. Izatt and J. G. Fujimoto, eds. Proc. SPIE 5316, 62-65 (2004).
    [CrossRef]
  19. M. W. Jenkins, F. Rothenberg, D. Roy, V. Nikolski, D. L. Wilson, I. R. Efimov and A. M. Rollins, "4D optical coherence tomography of the embryonic heart using gated reconstruction," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt and J. G. Fujimoto, eds. Proc. SPIE 5690, 1-3 (2005
    [CrossRef]
  20. Z. Hu and A. M. Rollins, "Quasi-telecentric optical design of microscope-compatible OCT scanner," Opt. Express 13, 6407-6415 (2005), <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6407>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6407</a>.
    [CrossRef] [PubMed]
  21. J. A. Izatt, A. M. Rollins and R. Ung-arunyawee, "System integration and signal processing," in Handbook of Optical Coherence Tomography, B. Bouma and G. Tearney, eds. (Marcel Dekker, Inc., New York, 2002), pp. 143-174.
  22. Y. Q. Zhou, F. S. Foster, D. W. Qu, M. Zhang, K. A. Harasiewicz and S. L. Adamson, "Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood," Physiol. Genomics 10, 113-126 (2002).
    [PubMed]
  23. C. K. L. Phoon and D. H. Turnball, "Ultrasound biomicroscopy-doppler in mouse cardiovascular development," Physiol. Genomics 14, 3-15 (2003).
    [PubMed]
  24. Y. Gui, K. K. Linask, P. Khowsathit and J. Huhta, "Doppler echocardiography of normal and abnormal embryonic mouse heart," Pediatr. Res. 40, 633-642 (1996).
    [CrossRef] [PubMed]
  25. A. H. Bhat, V. N. Corbett, R. Liu, N. D. Carpenter, N. W. Liu, A. M. Wu, G. D. Hopkins, X. Li and D. J. Sahn, "Validation of volume and mass assessments for human fetal heart imaging by 4-dimensional spatiotemporal image correlation echocardiography: in vitro balloon model experiments," J. Ultrasound Med. 23, 1151-1159 (2004).
    [PubMed]
  26. A. H. Bhat, V. Corbett, N. Carpenter, N. Liu, R. Liu, A. Wu, G. Hopkins, R. Sohaey, C. Winkler, C. S. Sahn, V. Sovinsky, X. D. Li and D. J. Sahn, "Fetal ventricular mass determination on three-dimensional Echocardiography: Studies in normal fetuses and validation experiments," Circulation 110, 1054-1060 (2004).
    [CrossRef] [PubMed]
  27. X. Zhang, T. M. Yelbuz, G. P. Cofer, M. A. Choma, M. L. Kirby and G. A. Johnson, "Improved preparation of chick embryonic samples for magnetic resonance microscopy," Magn. Reson. Med. 49, 1192-1195 (2003).
    [CrossRef] [PubMed]
  28. T. F. H. Ota, Y. Ishihara, H. Tanaka and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 024010 (2005).
    [CrossRef] [PubMed]
  29. J. R. Hove, R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser and M. Gharib, "Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis," Nature 421, 172-177 (2003).
    [CrossRef] [PubMed]
  30. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt and E. H. K. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007-1009 (2004).
    [CrossRef] [PubMed]
  31. B. B. Keller, J. Tinney and N. Hu, "Embryonic ventricular diastolic and systolic pressure-volume relations," Cardiol. Young 4, 19-27 (1994).
    [CrossRef]
  32. N. T. C. Ursem, S. Steckelenburg-De Vos, J. W. Wladimiroff, R. E. Poelmann, A. C. Gittenberger-de Groot, N. Hu and E. B. Clark, "Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction," J. Exp. Biol. 207, 1487-1490 (2004).
    [CrossRef] [PubMed]
  33. A. Shay-Salit, M. Shushy, E. Wolfovitz, H. Yahav, F. Breviario, E. Dejana and N. Resnick, "VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells," Proc. Natl. Acad. Sci. USA 99, 9462-9467 (2002).
    [CrossRef] [PubMed]
  34. M. Reckova, C. Rosengarten, A. deAlmeida, C. F. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson and D. Sedmera, "Hemodynamics is a key epigenetic factor in development of the cardiac conduction system," Circ. Res. 93, 77-85 (2003).
    [CrossRef] [PubMed]
  35. T. Ishiwata, M. Nakazawa, W. T. Pu, S. G. Tevosian, and S. Izumo, "Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos," Circ. Res. 93, 857-865 (2003).
    [CrossRef] [PubMed]
  36. N. Hu and E. Clark, "Hemodynamics of the stage 12 to stage 29 chick embryo," Circ. Res. 65, 1665 (1989).
    [PubMed]
  37. C. Hall, R. Hurtado, K. Hewett, M. Shulimovich, C. Poma, M. Reckova, C. Justus, D. Pennisi, K. Tobita, D. Sedmera, R. Gourdie and T. Mikawa, "Hemodynamic-dependent patterning of Endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart," Development 131, 581-592 (2004).
    [CrossRef] [PubMed]
  38. J. Omens, "Stress and strain as regulators of myocardial growth," Prog. in Biophys. & Mol. Biol. 69, 559-572 (1998).
  39. Y. Kuramochi, C. C. Lim, X. Guo, W. S. Colucci, R. Liao and D. B. Sawyer, "Myocyte contractile activity modulates norepinephrine cytotoxicity and survival effects of neuregulin-1-beta," Am. J. Physiol. Cell Physiol. 286, C222-229 (2004).
    [CrossRef]
  40. A. F. Fercher, C. K. Hitzenberger, G. Kamb and S. Y. El-Zaiat, "Measurements of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]

Am. J. Physiol. Cell Physiol.

Y. Kuramochi, C. C. Lim, X. Guo, W. S. Colucci, R. Liao and D. B. Sawyer, "Myocyte contractile activity modulates norepinephrine cytotoxicity and survival effects of neuregulin-1-beta," Am. J. Physiol. Cell Physiol. 286, C222-229 (2004).
[CrossRef]

Am. J. Physiol. Heart Circ. Physiol.

C. K. L. Phoon, O. Aristizabal and D. H. Turnball, "Spatial velocity profile in mouse embryonic aorta and doppler-derived volumetric flow: a preliminary model," Am. J. Physiol. Heart Circ. Physiol. 283, H908-H916 (2002).
[PubMed]

E. A. V. Jones, M. H. Baron, S. E. Fraser and M. E. Dickinson, "Measuring hemodynamic changes during mammalian development," Am. J. Physiol. Heart Circ. Physiol. 287, H1561-H1569 (2004).
[CrossRef] [PubMed]

K. Tobita and B. B. Keller, "Maturation of end-systolic stress-strain relations in chick embryonic myocardium," Am. J. Physiol. Heart Circ. Physiol. 279, H216-H224 (2000).
[PubMed]

Cardiol. Young

B. B. Keller, J. Tinney and N. Hu, "Embryonic ventricular diastolic and systolic pressure-volume relations," Cardiol. Young 4, 19-27 (1994).
[CrossRef]

Circ. Res.

M. Reckova, C. Rosengarten, A. deAlmeida, C. F. Stanley, A. Wessels, R. G. Gourdie, R. P. Thompson and D. Sedmera, "Hemodynamics is a key epigenetic factor in development of the cardiac conduction system," Circ. Res. 93, 77-85 (2003).
[CrossRef] [PubMed]

T. Ishiwata, M. Nakazawa, W. T. Pu, S. G. Tevosian, and S. Izumo, "Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos," Circ. Res. 93, 857-865 (2003).
[CrossRef] [PubMed]

N. Hu and E. Clark, "Hemodynamics of the stage 12 to stage 29 chick embryo," Circ. Res. 65, 1665 (1989).
[PubMed]

Circulation

T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby and J. A. Izatt, "Optical Coherence Tomography: a new high-resolution imaging technology to study cardiac development in chick embryos," Circulation 106, 2771-2774 (2002).
[CrossRef] [PubMed]

A. H. Bhat, V. Corbett, N. Carpenter, N. Liu, R. Liu, A. Wu, G. Hopkins, R. Sohaey, C. Winkler, C. S. Sahn, V. Sovinsky, X. D. Li and D. J. Sahn, "Fetal ventricular mass determination on three-dimensional Echocardiography: Studies in normal fetuses and validation experiments," Circulation 110, 1054-1060 (2004).
[CrossRef] [PubMed]

T. M. Yelbuz, X. Zhang, M. A. Choma, H. A. Stadt, M. Zdanowicz, G. A. Johnson and M. L. Kirby, "Approaching cardiac development in three dimensions by magnetic resonance microscopy," Circulation 108, 154-155 (2002).
[CrossRef]

Curr. Opin. Biotechnol

J. M. Tyszka, S. E. Fraser and R. E. Jacobs, "Magnetic resonance microscopy: recent advances and applications," Curr. Opin. Biotechnol. 16, 93-99 (2005).
[CrossRef] [PubMed]

Dev. Biol.

S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney and J. G. Fujimoto, "Investigation of developing embryonic morphology using optical coherence tomography," Dev. Biol. 177, 54-64 (1996).
[CrossRef] [PubMed]

Development

C. Hall, R. Hurtado, K. Hewett, M. Shulimovich, C. Poma, M. Reckova, C. Justus, D. Pennisi, K. Tobita, D. Sedmera, R. Gourdie and T. Mikawa, "Hemodynamic-dependent patterning of Endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart," Development 131, 581-592 (2004).
[CrossRef] [PubMed]

Exp. Biol.

N. T. C. Ursem, S. Steckelenburg-De Vos, J. W. Wladimiroff, R. E. Poelmann, A. C. Gittenberger-de Groot, N. Hu and E. B. Clark, "Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction," J. Exp. Biol. 207, 1487-1490 (2004).
[CrossRef] [PubMed]

Handbook of Optical Coherence Tomography

J. A. Izatt, A. M. Rollins and R. Ung-arunyawee, "System integration and signal processing," in Handbook of Optical Coherence Tomography, B. Bouma and G. Tearney, eds. (Marcel Dekker, Inc., New York, 2002), pp. 143-174.

J. Biomed. Opt.

T. F. H. Ota, Y. Ishihara, H. Tanaka and T. Takamatsu, "In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy," J. Biomed. Opt. 10, 024010 (2005).
[CrossRef] [PubMed]

J. Neurosci. Methods

S. A. Boppart, B. E. Bouma, M. E. Brezinski, G. J. Tearney and J. G. Fujimoto, "Imaging developing neural morphology using optical coherence tomography," J. Neurosci. Methods 70, 65-72 (1996).
[CrossRef] [PubMed]

J. Ultrasound Med.

A. H. Bhat, V. N. Corbett, R. Liu, N. D. Carpenter, N. W. Liu, A. M. Wu, G. D. Hopkins, X. Li and D. J. Sahn, "Validation of volume and mass assessments for human fetal heart imaging by 4-dimensional spatiotemporal image correlation echocardiography: in vitro balloon model experiments," J. Ultrasound Med. 23, 1151-1159 (2004).
[PubMed]

Magn. Reson. Med.

X. Zhang, T. M. Yelbuz, G. P. Cofer, M. A. Choma, M. L. Kirby and G. A. Johnson, "Improved preparation of chick embryonic samples for magnetic resonance microscopy," Magn. Reson. Med. 49, 1192-1195 (2003).
[CrossRef] [PubMed]

Mayo Clin. Proc.

M. Belohlavek, D. A. Foley, T. C. Gerber, T. M. Kinter, J. F. Greenleaf and J. B. Seward, "Three and four dimensional cardiovascular ultrasound imaging: A new era for Echocardiography," Mayo Clin. Proc. 68, 221-240 (1993).
[PubMed]

Nature

J. R. Hove, R. W. Koster, A. S. Forouhar, G. Acevedo-Bolton, S. E. Fraser and M. Gharib, "Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis," Nature 421, 172-177 (2003).
[CrossRef] [PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamb and S. Y. El-Zaiat, "Measurements of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express

Z. Hu and A. M. Rollins, "Quasi-telecentric optical design of microscope-compatible OCT scanner," Opt. Express 13, 6407-6415 (2005), <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6407>http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-17-6407</a>.
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson and I. A. Vitkin, "High speed, wide velocity dynamic range doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11, 1650-1658 (2003) <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1650>http://www.opticsexpress.org.abstract.cfm?URI=OPEX-11-14-1650</a>.
[CrossRef] [PubMed]

S. Yazdanfar, M. Kulkarni and J. A. Izatt, "High resolution imaging of in vivo cardiac dynamics using color doppler optical coherence tomography," Opt. Express 1, 424-431 (1997), <a href= http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-13-424>http://www.opticsexpress.org/abstract cfm?URI=OPEX-11-13 424</a>.
[CrossRef] [PubMed]

Opt. Lett

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590 (1994).
[CrossRef] [PubMed]

Pediatr. Res.

S. Steckelenburg-De Vos, P. Steendijk, N. T. C. Ursem, J. W. Wladimiroff, R. Delfos and R. E. Poelmann, "Systolic and diastolic ventricular function assessed by pressure-volume loops in the stage 21 venous clipped chick embryo," Pediatr. Res. 57, 16-21 (2005).
[CrossRef]

Y. Gui, K. K. Linask, P. Khowsathit and J. Huhta, "Doppler echocardiography of normal and abnormal embryonic mouse heart," Pediatr. Res. 40, 633-642 (1996).
[CrossRef] [PubMed]

Physiol. Genomics

Y. Q. Zhou, F. S. Foster, D. W. Qu, M. Zhang, K. A. Harasiewicz and S. L. Adamson, "Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood," Physiol. Genomics 10, 113-126 (2002).
[PubMed]

C. K. L. Phoon and D. H. Turnball, "Ultrasound biomicroscopy-doppler in mouse cardiovascular development," Physiol. Genomics 14, 3-15 (2003).
[PubMed]

Proc SPIE

M. W. Jenkins, C. J. Pedersen, R. S. Wade, V. Nikolski, Y. Cheng, I. R. Efimov and A. M. Rollins, "Three-dimensional OCT imaging of Endocardial architecture," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VIII, V. V. Tuchin, J. A. Izatt and J. G. Fujimoto, eds. Proc. SPIE 5316, 62-65 (2004).
[CrossRef]

Proc. Natl. Acad. Sci.

S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. 94, 4256-4261 (1997).
[CrossRef] [PubMed]

A. Shay-Salit, M. Shushy, E. Wolfovitz, H. Yahav, F. Breviario, E. Dejana and N. Resnick, "VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells," Proc. Natl. Acad. Sci. USA 99, 9462-9467 (2002).
[CrossRef] [PubMed]

Proc. SPIE

M. W. Jenkins, F. Rothenberg, D. Roy, V. Nikolski, D. L. Wilson, I. R. Efimov and A. M. Rollins, "4D optical coherence tomography of the embryonic heart using gated reconstruction," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, V. V. Tuchin, J. A. Izatt and J. G. Fujimoto, eds. Proc. SPIE 5690, 1-3 (2005
[CrossRef]

Prog. in Biophys. & Mol. Biol.

J. Omens, "Stress and strain as regulators of myocardial growth," Prog. in Biophys. & Mol. Biol. 69, 559-572 (1998).

Radiographics

K. Saito, M. Saito, S. Komatu and K. Ohtomo, "Real-time four-dimensional imaging of the heart with multi-detector row CT," Radiographics 23, e8-8 (2003).
[CrossRef] [PubMed]

Radiology

P. Lanzer, E. Botvinick, N. Schiller, L. Crooks, M. Arakawa, L. Kaufman, P. Davis, R. Herfkens, M. Lipton and C. Higgins, "Cardiac imaging using gated magnetic resonance," Radiology 150, 121-127 (1984).
[PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt and E. H. K. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science 305, 1007-1009 (2004).
[CrossRef] [PubMed]

Supplementary Material (5)

» Media 1: AVI (321 KB)     
» Media 2: AVI (752 KB)     
» Media 3: AVI (370 KB)     
» Media 4: AVI (567 KB)     
» Media 5: AVI (337 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Gated Reconstruction. The figure depicts B-scans captured for 4 different phases in the cardiac cycle before moving to the next position to capture B-scans in the same phase as in the previous position. 3D images are reconstructed at each phase.

Fig. 2.
Fig. 2.

Gated OCT Setup. Arbitrary waveform generators control timing elements (scanning optics and frame synchronization signal) in the OCT setup. We paced the heart at 1 Hz and are capable of capturing 4800 B-scans in five minutes. AWG 1 - arbitrary waveform generator 1, AWG 2 - arbitrary waveform generator 2.

Fig. 3.
Fig. 3.

Three-dimensional reconstruction of a 13.5 dpc embryonic mouse heart, ventral view (top left panel). A digital image of the same mouse heart is below the rendered image. The scale bar applies to all of the images. Panels A-D are samples of transverse 2D OCT “slices” through the heart at levels represented by the labeled lines in the reconstruction. The smooth walled outflow tract (oft) can be distinguished from the trabeculated right and left ventricles (panels B and C) right ventricle - RV, left ventricle - LV. The “corrugated” inner surfaces of the atria are also visible (panels A and B, left and right atria: LA and RA)

Fig. 4.
Fig. 4.

(A) Digitally “sliced” open embryonic mouse heart (same heart as in Figure 3). The scale bar applies to all of the images. The grey regions represent the “cut” surface, the red areas are the reconstructed portion. The rough ventricular trabecular surface can be easily distinguished from the smooth endocardial surface of the atria, and endocardial cushions lining the lumen are easily seen. Note that the OCT slices used to create the reconstruction in Figure 3 were transversely oriented, however once the reconstruction is made, the heart can be viewed from any angle, section, or view. (B) (321 KB) Three-dimensional reconstruction of a 13.5 dpc embryonic mouse heart, ventral view. The black line indicates the slice for the heart in (A) [Media 1].

Fig. 5.
Fig. 5.

Stage 13 chick embryo heart. All images in panel come from the same heart except for panel H and I. (A) Photograph of heart taken after fixation. (B) (752 KB) 3D OCT image taken with the 4D-OCT setup, providing a ‘snapshot’ of one of the phases in the cardiac cycle [Media 2]. (C & D) (370 KB) Embryonic chick heart in end-relaxation and end-contraction obtained with the 4D-OCT scanner. The yellow arrows point to a closed then open OFT [Media 3]. (E & F) Scanning micrographs cut with the same orientation as the 2D scans in panel G. The arrows point to the endothelial invaginations. (G) (567 KB) Two 2D images from the same position (position 16), but different phases (end-relaxation and end-contraction) in the cardiac cycle [Media 4]. Outlines delineate the ventricular chamber (smaller at end-contraction). The yellow outline indicates area used in the calculation of ejection fraction. The yellow arrow points to trabeculae in the ventricle. (H & I) Sections through the embryonic heart stained with H&E (panel H & I show low and high power images of the same section, respectively) and anti-sarcomeric actin (panel I, red). The unlabeled arrow points to the endothelial invagination, absent in panel I. CM -compact myocardium, CJ - cardiac jelly, D - dorsal, V - ventral, Pos 16 - position 16, Vent - ventricle, OFT - outflow tract, End-Relax - end-relaxation, and End-Cont - end-contraction.

Fig. 6.
Fig. 6.

Top panel: 3D reconstruction of a stage 15 embryonic chick heart and a corresponding subset of 2D OCT images used in its construction (A-D). Bottom panel: 3D reconstruction of a stage 20 embryonic chick heart and a corresponding subset of 2D OCT images used in its construction (E-H). Panels A-D: The red outline marks endocardium of the heart tube that is in the process of contraction, green lines indicate that part of the heart tube in the process of relaxation. Panels E-H: The outflow tract cushions (asterisks in panel E) can easily be distinguished, as can the atrioventricular endocardial cushions (EC in panel G). The interventricular foramen between the primitive left and right ventricles can also be distinguished from the atrioventricular cushions (panel F). The scale bar applies to all of the images. oft - outflow tract, IVF - interventricular foramen, EC - endocardial cushions, LA - left side of atrium, LV - left ventricle, RV - right ventricle.

Fig. 7.
Fig. 7.

Wall thickness measured in a stage 15 embryonic heart. Panel A indicates the technique employed (see text). Panel B graphically shows the wall thickness during relaxation of contraction for the same heart at the radial positions indicated in Panel A.

Fig. 8.
Fig. 8.

(337 KB) Peristalsis in a stage 13 embryonic chick heart is demonstrated in these selected OCT slices. The heart (same one as in Fig. 5) was originally imaged in the transverse direction. After the reconstruction was made, sections through the ventricle (vent) and outflow tract (oft) were digitally prepared. This orientation permitted the very first visualization of peristalsis as seen from the endocardial surface. The red outline traces the endocardial surface. The heart is paced just prior to image 1, and the fluid within the heart is distributed evenly between the ventricle and the outflow tract (arrows) until image 3, when the bolus is ejected into the outflow tract (3 and 4). Image 4 has been termed “end-contraction”. Image 10 reflects “end-relaxation”, and the fluid bolus is primarily within the ventricle. [Media 5]

Tables (1)

Tables Icon

Table 1. Ventricular ejection fractions calculated from 2D OCT slices as described in the text. Ejection fraction values are calculated from regions of maximal contraction rather than the entire ventricular volume due to peristaltic activity of the embryonic heart.

Metrics