Abstract

A quasi-continuous wave Dy3+-doped ZBLAN fibre laser pumped by a ~1.3 μm Nd:YAG laser and operating at 2.96 μm with an emission linewidth of ~14 nm (FWHM) has been demonstrated. The 6H15/26H9/2 , 6F11/2 absorption band of Dy3+-doped ZBLAN centred at 1.3 μm has been used to pump the 6H13/26H15/2 laser transition. For a 60 cm fibre length, a threshold of 0.5 W and a slope efficiency of ~20% with respect to the absorbed pump power was measured. The experimental slope efficiency was ~45% of the Stokes efficiency limit. The high efficiency relates to low pump ESA losses and an optimised output coupling as compared with previous demonstrations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, "Efficient and compact high-power mid-IR (~3 µm) lasers for surgical applications," in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIV, K. E. Bartels, L. S. Bass, eds., Proc. SPIE 5312, 218-222 (2004).
    [CrossRef]
  2. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, P. Sloan, "Laser-tissue interaction with a continuous wave 3 µm fibre laser: Preliminary studies with soft tissue," Lasers Surg. Med. 26, 491-495 (2000).
    [CrossRef] [PubMed]
  3. B. Srinivasan, E. Poppe, and R. K. Jain, "40 mW single-transverse-mode mid-IR (2.7 µm) cw output from a simple mirror-free 780-nm diode-pumpable fiber laser," in CLEO Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1998) p.297, 1998.
  4. T. Sandrock, D. Fischer, P. Glas, M. Leitner, and M. Wrage, "Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 µ m," Opt. Lett. 24, 1284-1286 (1999).
    [CrossRef]
  5. S. D. Jackson, "Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm," Opt. Lett. 29, 334-336 (1999).
    [CrossRef]
  6. F. Qamar, T. A. King, S. D. Jackson, and Y. H. Tsang, "Holmium, praseodymium doped-fluoride fibre laser operating near 2.87 µ m and pumped with a Nd:YAG laser," IEEE J. Lightwave Technol. (to be published).
  7. S. D. Jackson, "Continuous wave 2.9 µ m dysprosium-doped fluoride fiber laser," Appl. Phys. Lett. 83, 1316-1318 (2003).
    [CrossRef]
  8. D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, "Diode-pumped 1-W continuous-wave Er:YAG 3- µm laser," Opt. Lett. 24, 385 (1999).
    [CrossRef]
  9. L. F. Johnson, and H. J. Guggenheim, "Laser emission at 3µ from Dy3+ in BaY2F8," Appl. Phys. Lett. 23, 96-98 (1973).
    [CrossRef]
  10. A. A. Mak, and B. M. Antipenko, "Rare-earth converters of neodymium laser radiation," J. Appl. Spectrosc. 37, 1458 (1982).
    [CrossRef]
  11. B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Yu. V. Tomashevich, and G. S. Shakhkalamyan, "Three-micron laser action in Dy3+," Kvantovaya Elektron. 7, 983-987 (1980).
  12. N. Djeu, V. E. Hartwell, A. A. Kaminskii, and A. V. Butashin, "Room-temperature 3.4-µm Dy:BaYb2F8 laser," Opt. Lett. 22, 997-999 (1997).
    [CrossRef] [PubMed]
  13. J. L. Adam, A. D. Docq, and J. Lucas, "Optical transitions of Dy3+ ions in fluorozirconate glass," J. Solid State Chem. 75, 403-412 (1988).
    [CrossRef]
  14. S. D. Jackson, "Direct evidence for laser reabsorption as initial cause for self-pulsing in three-level fibre lasers," Electron. Lett. 38, 1640-1642 (2002).
    [CrossRef]
  15. Y. H. Tsang, T. A. King, D.-K. Ko and J. Lee, "Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser," Opt. Commun. (to be published).

Appl. Phys. Lett.

L. F. Johnson, and H. J. Guggenheim, "Laser emission at 3µ from Dy3+ in BaY2F8," Appl. Phys. Lett. 23, 96-98 (1973).
[CrossRef]

S. D. Jackson, "Continuous wave 2.9 µ m dysprosium-doped fluoride fiber laser," Appl. Phys. Lett. 83, 1316-1318 (2003).
[CrossRef]

Electron. Lett.

S. D. Jackson, "Direct evidence for laser reabsorption as initial cause for self-pulsing in three-level fibre lasers," Electron. Lett. 38, 1640-1642 (2002).
[CrossRef]

J. Appl. Spectrosc.

A. A. Mak, and B. M. Antipenko, "Rare-earth converters of neodymium laser radiation," J. Appl. Spectrosc. 37, 1458 (1982).
[CrossRef]

J. Solid State Chem.

J. L. Adam, A. D. Docq, and J. Lucas, "Optical transitions of Dy3+ ions in fluorozirconate glass," J. Solid State Chem. 75, 403-412 (1988).
[CrossRef]

Kvantovaya Elektron.

B. M. Antipenko, A. L. Ashkalunin, A. A. Mak, B. V. Sinitsyn, Yu. V. Tomashevich, and G. S. Shakhkalamyan, "Three-micron laser action in Dy3+," Kvantovaya Elektron. 7, 983-987 (1980).

Lasers Surg. Med.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, P. Sloan, "Laser-tissue interaction with a continuous wave 3 µm fibre laser: Preliminary studies with soft tissue," Lasers Surg. Med. 26, 491-495 (2000).
[CrossRef] [PubMed]

Opt. Lett.

T. Sandrock, D. Fischer, P. Glas, M. Leitner, and M. Wrage, "Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 µ m," Opt. Lett. 24, 1284-1286 (1999).
[CrossRef]

S. D. Jackson, "Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm," Opt. Lett. 29, 334-336 (1999).
[CrossRef]

N. Djeu, V. E. Hartwell, A. A. Kaminskii, and A. V. Butashin, "Room-temperature 3.4-µm Dy:BaYb2F8 laser," Opt. Lett. 22, 997-999 (1997).
[CrossRef] [PubMed]

D. W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, and R. A. Fields, "Diode-pumped 1-W continuous-wave Er:YAG 3- µm laser," Opt. Lett. 24, 385 (1999).
[CrossRef]

OSA Technical Digest Series (CLEO 1998)

B. Srinivasan, E. Poppe, and R. K. Jain, "40 mW single-transverse-mode mid-IR (2.7 µm) cw output from a simple mirror-free 780-nm diode-pumpable fiber laser," in CLEO Vol. 6 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1998) p.297, 1998.

Proc. SPIE

J. Tafoya, J. Pierce, R. K. Jain, and B. Wong, "Efficient and compact high-power mid-IR (~3 µm) lasers for surgical applications," in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XIV, K. E. Bartels, L. S. Bass, eds., Proc. SPIE 5312, 218-222 (2004).
[CrossRef]

Other

Y. H. Tsang, T. A. King, D.-K. Ko and J. Lee, "Output dynamics and stabilisation of a multi-mode double-clad Yb-doped silica fibre laser," Opt. Commun. (to be published).

F. Qamar, T. A. King, S. D. Jackson, and Y. H. Tsang, "Holmium, praseodymium doped-fluoride fibre laser operating near 2.87 µ m and pumped with a Nd:YAG laser," IEEE J. Lightwave Technol. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Energy levels of the Dy3+ ion. The laser transition and pump GSA and pump ESA for two different pumping schemes at 1.1 μm and 1.3 μm are also shown.

Fig. 2.
Fig. 2.

Measured absorption spectrum for a 40,000 ppm molar Dy3+-doped ZBLAN bulk sample in the range 1- 1.5 μm. Peak pump wavelengths are shown for a 1.1 μm pump source from a Yb-fibre laser and two lines from a ~1.3 μm Nd:YAG laser.

Fig. 3.
Fig. 3.

Experimental arrangement for the 2.96 μm Dy-doped ZBLAN fibre laser pumped by a ~1.3 μm Nd:YAG crystal laser.

Fig. 4.
Fig. 4.

Normalised continuous ~1.3μm Nd:YAG pump laser spectrum before and after transmitted through the Dy-ZBLAN fibre.

Fig. 5.
Fig. 5.

Laser output power of the 2.96 μm Dy3+-doped ZBLAN fibre laser with variation of the absorbed pump power for two fibre lengths.

Fig. 6.
Fig. 6.

Measured spectrum of the output from the Dy3+-doped ZBLAN fibre laser for a ~60 cm fibre length. The output power is ~30mW

Fig. 7.
Fig. 7.

Typical output intensity fluctuations of the ~70 cm Dy-ZBLAN fibre for ~1.8 W launched pump power and generating an average power of ~150 mW at ~3 μm for two different time scales over (a) 250 ms and (b) 1 ms.

Tables (1)

Tables Icon

Table 1. Performance of the Dy3+- doped ZBLAN fibre laser for two different fibre lengths.

Metrics