Abstract

A new adaptive optics system for the eye using a pyramid wavefront sensor interfaced in closed-loop with a piezoelectric deformable mirror is presented. Sensing parameters such as CCD integration time, pupil sampling and beam steering amplitude are tested on the bench and in vivo on several volunteers to optimize real-time optical correction. The system allows closed-loop operation at a frame rate of 55 Hz and reduces ocular aberration up to λ/5 residual RMS over a 6 mm pupil. Aberration correction and mirror control stability clearly increase when smaller beam steering amplitudes synonymous of higher wavefront sensing sensitivity are used. This result suggests that using pyramid wavefront sensors can improve the performance of adaptive-optics system for ophthalmic applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal Vision and High-Resolution Retinal Imaging Through Adaptive Optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  2. E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-Loop Adaptive Optics in the Human Eye," Opt. Lett. 26, 746-748 (2001).
    [CrossRef]
  3. A. Roorda, F. Romero-Borja, W. J. I. Donnelly, H. Quenner, T. J. Hebert, and M. C. Campbell, "Adaptive Optics Scanning Laser Ophthalmosopy," Opt. Express 10, 405-412 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405</a>.
    [PubMed]
  4. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Lena, "Towards Wide-Field Retinal Imaging With Adaptive Optics," Opt. Commun. 230, 225-228 (2004).
    [CrossRef]
  5. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-Optics Ultrahigh-Resolution Optical Coherence Tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  6. Y. Zhang, J. Rha, R. S. Jonnal, D. T. Miller, "Adaptive Optics Parallel Spectral Domain Optical Coherence Tomography for Imaging the Living Retina," Opt. Express 13, 4792-4811 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>.
    [CrossRef] [PubMed]
  7. B. Platt and R. V. Shack, "Lenticular Hartmann Screen," Opt. Sci. Center Newsl. (University of Arizona) 5, 15-16 (1971).
  8. R. Ragazzoni, "Pupil Plane Wavefront Sensing With an Oscillating Prism," J. Mod. Opt. 43, 289-293 (1996).
    [CrossRef]
  9. A. Ghedina, M. Cecconi, R. Ragazzoni, J. Farinato, A. Baruffolo, G. Crimi, E. Diolaiti, S. Esposito, L. Fini, M. Ghigo, E. Marchetti, T. Niero, and A. Puglisi, "On Sky Test of the Pyramid Wavefront Sensor," in Adaptive Optical System II, P. L.Wizinowich and D. Bonaccini, eds., Proc. SPIE 4839, 869-877 (2003).
    [CrossRef]
  10. R. Ragazzoni and J. Farinato, "Sensitivity of a Pyramidic Wave Front Sensor in Closed Loop Adaptive Optics," Astron. Astrophys. 350, L23-L26 (1999).
  11. S. Esposito and A. Riccardi, "Pyramid Wavefront Sensor Behavior in Partial Correction Adaptive Optics Systems," Astron. Astrophys. 369, L9-L12 (2001).
    [CrossRef]
  12. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, "Extended Source Pyramid Wave-Front Sensor for the Human Eye," Opt. Express 10, 419-428 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-419">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-419</a>.
    [PubMed]
  13. P. Artal, S. Marcos, R. Navarro, and D. R.Williams, "Odd Aberrations and Double-Pass Measurements of Retinal Image Quality," J. Opt. Soc. Am. A 12, 195-201 (1995).
    [CrossRef]
  14. European Standard / EN60825-1:1993/A2:2001, European Committee for Electrotechnical Standardization (2001).
  15. E. Dalimier and J. C. Dainty, "Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics," Opt. Express 13, 4275-4285 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275</a>.
    [CrossRef] [PubMed]
  16. P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive Optics With a Programmable Phase Modulator: Applications in the Human Eye," Opt. Express 12, 4059-4071 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059</a>.
    [CrossRef] [PubMed]
  17. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in Retinal Image Quality With Dynamic Correction of the Eyes Aberration," Opt. Express 8, 631-643 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631</a>.
    [CrossRef] [PubMed]
  18. L. N. Thibos, A. Bradley, and X. Hong, "A Statistical Model of the Aberration Structure of Normal, Well-Corrected Eyes," Ophthal. Phys. Opt. 22, 427-433 (2002).
    [CrossRef]
  19. W. S. Stiles and B. H. Crawford, "The Luminous Efficiency of Rays Entering the Eye Pupil at Different Points," Proc. R. Soc. Lond. B 112, 428-450 (1933).
    [CrossRef]
  20. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and J. C. Dainty, "Benefits of Higher Closed-Loop Bandwidths in Ocular Adaptive Optics," Opt. Express 11, 2597-2605 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597</a>.
    [CrossRef] [PubMed]
  21. T. Nirmaier, C. A. Diez, and J. F. Bille, "High Speed CMOS Wavefront Sensor With Resisting Ring Networks of Winner-Take-All Circuits," IEEE Journal of Solid-State Circuits 40, 2315-2322 (2005).
    [CrossRef]

Astron. Astrophys. (2)

R. Ragazzoni and J. Farinato, "Sensitivity of a Pyramidic Wave Front Sensor in Closed Loop Adaptive Optics," Astron. Astrophys. 350, L23-L26 (1999).

S. Esposito and A. Riccardi, "Pyramid Wavefront Sensor Behavior in Partial Correction Adaptive Optics Systems," Astron. Astrophys. 369, L9-L12 (2001).
[CrossRef]

IEEE Journal of Solid-State Circuits (1)

T. Nirmaier, C. A. Diez, and J. F. Bille, "High Speed CMOS Wavefront Sensor With Resisting Ring Networks of Winner-Take-All Circuits," IEEE Journal of Solid-State Circuits 40, 2315-2322 (2005).
[CrossRef]

J. Mod. Opt. (1)

R. Ragazzoni, "Pupil Plane Wavefront Sensing With an Oscillating Prism," J. Mod. Opt. 43, 289-293 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Liang, D. R. Williams, and D. T. Miller, "Supernormal Vision and High-Resolution Retinal Imaging Through Adaptive Optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
[CrossRef]

P. Artal, S. Marcos, R. Navarro, and D. R.Williams, "Odd Aberrations and Double-Pass Measurements of Retinal Image Quality," J. Opt. Soc. Am. A 12, 195-201 (1995).
[CrossRef]

Ophthal. Phys. Opt. (1)

L. N. Thibos, A. Bradley, and X. Hong, "A Statistical Model of the Aberration Structure of Normal, Well-Corrected Eyes," Ophthal. Phys. Opt. 22, 427-433 (2002).
[CrossRef]

Opt. Commun. (1)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Lena, "Towards Wide-Field Retinal Imaging With Adaptive Optics," Opt. Commun. 230, 225-228 (2004).
[CrossRef]

Opt. Express (7)

Y. Zhang, J. Rha, R. S. Jonnal, D. T. Miller, "Adaptive Optics Parallel Spectral Domain Optical Coherence Tomography for Imaging the Living Retina," Opt. Express 13, 4792-4811 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>.
[CrossRef] [PubMed]

E. Dalimier and J. C. Dainty, "Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics," Opt. Express 13, 4275-4285 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275</a>.
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive Optics With a Programmable Phase Modulator: Applications in the Human Eye," Opt. Express 12, 4059-4071 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059</a>.
[CrossRef] [PubMed]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in Retinal Image Quality With Dynamic Correction of the Eyes Aberration," Opt. Express 8, 631-643 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631</a>.
[CrossRef] [PubMed]

I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, "Extended Source Pyramid Wave-Front Sensor for the Human Eye," Opt. Express 10, 419-428 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-419">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-419</a>.
[PubMed]

A. Roorda, F. Romero-Borja, W. J. I. Donnelly, H. Quenner, T. J. Hebert, and M. C. Campbell, "Adaptive Optics Scanning Laser Ophthalmosopy," Opt. Express 10, 405-412 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405</a>.
[PubMed]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and J. C. Dainty, "Benefits of Higher Closed-Loop Bandwidths in Ocular Adaptive Optics," Opt. Express 11, 2597-2605 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597</a>.
[CrossRef] [PubMed]

Opt. Lett. (2)

B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-Optics Ultrahigh-Resolution Optical Coherence Tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-Loop Adaptive Optics in the Human Eye," Opt. Lett. 26, 746-748 (2001).
[CrossRef]

Opt. Sci. Center Newsl. (Univof Arizona) (1)

B. Platt and R. V. Shack, "Lenticular Hartmann Screen," Opt. Sci. Center Newsl. (University of Arizona) 5, 15-16 (1971).

Proc. R. Soc. Lond. B (1)

W. S. Stiles and B. H. Crawford, "The Luminous Efficiency of Rays Entering the Eye Pupil at Different Points," Proc. R. Soc. Lond. B 112, 428-450 (1933).
[CrossRef]

Proc. SPIE 2003 (1)

A. Ghedina, M. Cecconi, R. Ragazzoni, J. Farinato, A. Baruffolo, G. Crimi, E. Diolaiti, S. Esposito, L. Fini, M. Ghigo, E. Marchetti, T. Niero, and A. Puglisi, "On Sky Test of the Pyramid Wavefront Sensor," in Adaptive Optical System II, P. L.Wizinowich and D. Bonaccini, eds., Proc. SPIE 4839, 869-877 (2003).
[CrossRef]

Other (1)

European Standard / EN60825-1:1993/A2:2001, European Committee for Electrotechnical Standardization (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic optical setup showing the trajectory of the ingoing probing laser beam (dashed line) and the outgoing backscattered light (dotted line). L1-L6 achromat doublet lenses, M1-M4: mirrors, BS: beam splitter, PBS: pellicle beam splitter, M: mask, LD: laser diode (635 nm), DM: deformable mirror, SM: steering mirror, P: refractive pyramid element, CCD: charged coupled device

Fig. 2.
Fig. 2.

Left: Typical in vivo CCD frame (65×65 pixels) obtained for a 10 ms integration time at 4×4 binning with an angular tilt modulation of 21λ/D. Right: horizontal and vertical gradient maps calculated from this intensity image

Fig. 3.
Fig. 3.

RMS values of the reconstructed OPD map for a range of commands applied to the central actuator, while all other actuator are set at the bias position. The upper and lower curves correspond to RMS values obtained when sensing the wavefront with modulations of 28 and 7 λ/D, respectively, showing a clear reduction in RMS error for the lower modulation case

Fig. 4.
Fig. 4.

Left: Time evolution of the optical path difference RMS as recorded on a volunteer while closing the adaptive loop (7 λ/D modulation). Each spike corresponds to an eye blink. Center: Enlarged sequence showing the onset of the closed-loop correction. Right: maps of the wrapped phase before (up) and during (down) closed-loop operation

Fig. 5.
Fig. 5.

Left: Residual optical path difference RMS achieved during closed-loop correction for different modulation amplitude. Right: Average variance on the command corrections sent to the mirror for the same range of modulation amplitudes

Fig. 6.
Fig. 6.

Left: Double-pass ocular PSF recorded in one eye in open- (left) and closed-loop (right) conditions (21 λ/D modulation). In diffraction limited conditions, the probing beam has an Airy diameter of 13 μm at the retina and 42 μm on the imaging CCD. White scale bar: 100 μm

Fig. 7.
Fig. 7.

Left: Individual ΔÎx map calculated from a single CCD intensity frame. Right: ΔÎx map resulting from the average of 300 individual ΔÎx collected within 5 sec. on the same eye

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ x y x | i j R F Δ I ̂ x | i j = R F ( I 2 + I 4 I 1 I 3 I 1 + I 2 + I 3 + I 4 ) | i j
θ x y y | i j R F Δ I ̂ y | i j = R F ( I 1 + I 2 I 3 I 4 I 1 + I 2 + I 3 + I 4 ) | i j

Metrics