Abstract

A three dimensional analysis of a special class of anisotropic materials is presented. We introduce an extension of the Scattering Matrix Method (SMM) to investigate the behavior of anisotropic Photonic Crystal Slabs (PhCS) subject to external radiation. We show how the Fano effect can play a fundamental role in the realization of tunable optical devices. Moreover, we show how to utilize electron injection, electric field and temperature as parameters to control the Fano resonance shift in both isotropic and anisotropic materials as Si and Potassium Titanium Oxide Phosphate (KTP). We will see that because Fano modes are sensitive and controllable, a broad range of applications can be considered.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
4 × 4 matrix formalism applied to internal conical refraction

D. J. De Smet
J. Opt. Soc. Am. A 10(1) 186-190 (1993)

Total reflection of light propagating from an isotropic medium to an anisotropic medium

G. F. Torres del Castillo and C. J. Pérez Ballinas
Opt. Lett. 26(16) 1251-1252 (2001)

Polarization and angular dependent transmissions on transferred nanomembrane Fano filters

Li Chen, Zexuan Qiang, Hongjun Yang, Huiqing Pang, Zhenqiang Ma, and Weidong Zhou
Opt. Express 17(10) 8396-8406 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Jakob S. Jensen and Ole Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2021–2023 (2004).
    [Crossref]
  2. Akihiko Shinya, Satoshi Mitsugi, Eiichi Kuramochi, and Masaya Notomi “Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic crystal waveguide,” Opt. Express 13, 4202–4209 (2005).
    [Crossref] [PubMed]
  3. L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, “Ultralow-loss 3-dB photonic crystal waveguide splitter,” Opt. Lett. 29, 1623–1625 (2004).
    [Crossref] [PubMed]
  4. X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
    [Crossref]
  5. Yongqiang Jiang, Wei Jiang, Lanlan Gu, Xiaonan Chen, and Ray T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105–221107 (2005).
    [Crossref]
  6. Shanhui Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [Crossref]
  7. S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
    [Crossref]
  8. Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [Crossref]
  9. K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
    [Crossref]
  10. Vasily N. Astratov, Ian S. Culshaw, R. Mark Stevenson, David M. Whittaker, Maurce S. Skolnick, Thomax F. Krauss, and Richard M. De La Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguide,” J. Lightwave Technol. 17, 2050–2057 (1999).
    [Crossref]
  11. V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
    [Crossref]
  12. A. Rosenberg, Michael W. Carter, J. A. Casey, Mijin Kim, Ronald T. Holm, Richard L. Henry, Charles R. Eddy, V. A. Shamamian, K. Bussmann Shouyuan Shi, and Dennis W. Prather, “Guided resonances in symmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Express 13, 6564–6571 (2005).
    [Crossref] [PubMed]
  13. Andrey E. Miroshnichenko and Yuri S. Kivshar, “Sharp bends in photonic crystal waveguides as nonlinear Fano resonators,” Opt. Express 13, 3969–3976 (2005),.
    [Crossref] [PubMed]
  14. David Yuk Kei Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
    [Crossref]
  15. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
    [Crossref]
  16. Maciej Dems, Rafal Kotynski, and Krassinir Panajotov, “Plane wave admittance method-a novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express 13, 3196–3207 (2005).
    [Crossref] [PubMed]
  17. R. A. Soref and B. R. Bennett “Electro-optical Effects in Silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [Crossref]
  18. A. Irace, G. Breglio, and A. Cutolo, “All-silicon optoelectronic modulator with 1 GHz switching capability,” Electron. Lett. 39, 232–233 (2003).
    [Crossref]
  19. R.W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48, 928–936 (1935).
    [Crossref]
  20. U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfield’s Waves),” J. Opt. Soc. Am. 31, 213–222 (1941).
    [Crossref]
  21. U. Fano, “Effect of Configuration Interaction on Intensity and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [Crossref]
  22. A. Hessel and A.A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [Crossref]
  23. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  24. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
    [Crossref]
  25. M.G. Banaee, A.R. Cowan, and J.F. Young, “Third-order nonlinear influence on specular reflectivity of two-dimensional waveguide-based photonic crystals,” J. Opt. Soc. Am. B 19, 2224 (2002).
    [Crossref]
  26. M. Sarrazin, J.P. Vigneron, and J.M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [Crossref]
  27. J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
    [Crossref]
  28. W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
    [Crossref] [PubMed]
  29. W.V. Lousse and J.P. Vigneron, “Use of Fano resonances for bistable optical transfer through photonic crystal film,” Phys. Rev. B 69, 155106 (2004).
    [Crossref]
  30. H.J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
    [Crossref] [PubMed]
  31. A.E. Miroshnichenko and Y.S. Kivshar, “Engineering Fano resonances in discrete arrays,” Phys. Rev. E 72, 056611 (2005).
    [Crossref]
  32. E. Moreno, L. Martin-Moreno, and F.J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
    [Crossref]
  33. R. Gomez-Medina, M. Laroche, and J.J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
    [Crossref] [PubMed]
  34. B. Boulanger, J.P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
    [Crossref]

2006 (3)

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

E. Moreno, L. Martin-Moreno, and F.J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

R. Gomez-Medina, M. Laroche, and J.J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref] [PubMed]

2005 (6)

2004 (6)

Jakob S. Jensen and Ole Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2021–2023 (2004).
[Crossref]

L. H. Frandsen, P. I. Borel, Y. X. Zhuang, A. Harpøth, M. Thorhauge, M. Kristensen, W. Bogaerts, P. Dumon, R. Baets, V. Wiaux, J. Wouters, and S. Beckx, “Ultralow-loss 3-dB photonic crystal waveguide splitter,” Opt. Lett. 29, 1623–1625 (2004).
[Crossref] [PubMed]

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

W.V. Lousse and J.P. Vigneron, “Use of Fano resonances for bistable optical transfer through photonic crystal film,” Phys. Rev. B 69, 155106 (2004).
[Crossref]

H.J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[Crossref] [PubMed]

2003 (3)

M. Sarrazin, J.P. Vigneron, and J.M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
[Crossref]

A. Irace, G. Breglio, and A. Cutolo, “All-silicon optoelectronic modulator with 1 GHz switching capability,” Electron. Lett. 39, 232–233 (2003).
[Crossref]

2002 (3)

Shanhui Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

M.G. Banaee, A.R. Cowan, and J.F. Young, “Third-order nonlinear influence on specular reflectivity of two-dimensional waveguide-based photonic crystals,” J. Opt. Soc. Am. B 19, 2224 (2002).
[Crossref]

2000 (3)

B. Boulanger, J.P. Feve, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000).
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

1999 (3)

Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Vasily N. Astratov, Ian S. Culshaw, R. Mark Stevenson, David M. Whittaker, Maurce S. Skolnick, Thomax F. Krauss, and Richard M. De La Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguide,” J. Lightwave Technol. 17, 2050–2057 (1999).
[Crossref]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

1998 (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1988 (1)

David Yuk Kei Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett “Electro-optical Effects in Silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

1965 (1)

1961 (1)

U. Fano, “Effect of Configuration Interaction on Intensity and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

1941 (1)

1935 (1)

R.W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48, 928–936 (1935).
[Crossref]

Aguirre, C.M.

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
[Crossref]

Astratov, V. N.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Astratov, Vasily N.

Baets, R.

Banaee, M.G.

Barnes, W.L.

W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Beckx, S.

Bennett, B. R.

R. A. Soref and B. R. Bennett “Electro-optical Effects in Silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Bogaerts, W.

Bonnefont, S.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Borel, P. I.

Boucaud, P.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Boulanger, B.

Breglio, G.

A. Irace, G. Breglio, and A. Cutolo, “All-silicon optoelectronic modulator with 1 GHz switching capability,” Electron. Lett. 39, 232–233 (2003).
[Crossref]

Bussmann Shouyuan Shi, K.

Carter, Michael W.

Casey, J. A.

Checoury, X.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Chen, Ray T.

Yongqiang Jiang, Wei Jiang, Lanlan Gu, Xiaonan Chen, and Ray T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105–221107 (2005).
[Crossref]

Chen, Xiaonan

Yongqiang Jiang, Wei Jiang, Lanlan Gu, Xiaonan Chen, and Ray T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105–221107 (2005).
[Crossref]

Cowan, A.R.

Crozier, K. B.

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Cuisin, C.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Culshaw, I. S.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

Culshaw, Ian S.

Cutolo, A.

A. Irace, G. Breglio, and A. Cutolo, “All-silicon optoelectronic modulator with 1 GHz switching capability,” Electron. Lett. 39, 232–233 (2003).
[Crossref]

De La Rue, R. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

De La Rue, Richard M.

Dems, Maciej

Derouin, E.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Devaux, E.

W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Drisse, O.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Duan, G. H.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Dumon, P.

Ebbesen, T.W.

W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Eddy, Charles R.

Enoch, S.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]

Fan, Shanhui

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Shanhui Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Fano, U.

Feve, J.P.

Frandsen, L. H.

Garcia-Vidal, F.J.

E. Moreno, L. Martin-Moreno, and F.J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

Gauthier-Lafaye, O.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Ghaemi, H.F.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Gippius, N. A.

S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Gomez-Medina, R.

Gu, Lanlan

Yongqiang Jiang, Wei Jiang, Lanlan Gu, Xiaonan Chen, and Ray T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105–221107 (2005).
[Crossref]

Guillien, Y.

Halas, N.J.

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
[Crossref]

Harpøth, A.

Henry, Richard L.

Hessel, A.

Holm, Ronald T.

Inkson, J. C.

David Yuk Kei Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

Irace, A.

A. Irace, G. Breglio, and A. Cutolo, “All-silicon optoelectronic modulator with 1 GHz switching capability,” Electron. Lett. 39, 232–233 (2003).
[Crossref]

Ishihara, Teruya

S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Jensen, Jakob S.

Jakob S. Jensen and Ole Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2021–2023 (2004).
[Crossref]

Jiang, Wei

Yongqiang Jiang, Wei Jiang, Lanlan Gu, Xiaonan Chen, and Ray T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105–221107 (2005).
[Crossref]

Jiang, Yongqiang

Yongqiang Jiang, Wei Jiang, Lanlan Gu, Xiaonan Chen, and Ray T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105–221107 (2005).
[Crossref]

Joannopoulos, J. D.

Shanhui Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Johnson, Steven G.

Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Kilic, Onur

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Kim, Mijin

Kim, Sora

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Kivshar, Y.S.

A.E. Miroshnichenko and Y.S. Kivshar, “Engineering Fano resonances in discrete arrays,” Phys. Rev. E 72, 056611 (2005).
[Crossref]

Kivshar, Yuri S.

Kolodziejski, L. A.

Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Kotynski, Rafal

Krauss, T.F.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Krauss, Thomax F.

Kristensen, M.

Kuramochi, Eiichi

Laroche, M.

Lee, A.

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
[Crossref]

Legouezigou, L.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Lelarge, F.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Lezec, H.J.

H.J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[Crossref] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Lourtioz, J-M.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Lousse, Virginie

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Lousse, W.V.

W.V. Lousse and J.P. Vigneron, “Use of Fano resonances for bistable optical transfer through photonic crystal film,” Phys. Rev. B 69, 155106 (2004).
[Crossref]

Lozes, F.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Mark Stevenson, R.

Martin-Moreno, L.

E. Moreno, L. Martin-Moreno, and F.J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

Miroshnichenko, A.E.

A.E. Miroshnichenko and Y.S. Kivshar, “Engineering Fano resonances in discrete arrays,” Phys. Rev. E 72, 056611 (2005).
[Crossref]

Miroshnichenko, Andrey E.

Mitsugi, Satoshi

Moran, C.E.

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
[Crossref]

Moreno, E.

E. Moreno, L. Martin-Moreno, and F.J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

Mulin, D.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Muljarow, E. A.

S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Murray, W.A.

W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Nevière, M.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]

Notomi, Masaya

Oliner, A.A.

Panajotov, Krassinir

Poingt, F.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Pommereau, F.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Popov, E.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]

Prather, Dennis W.

Reinisch, R.

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]

Rosenberg, A.

Saenz, J.J.

Sarrazin, M.

M. Sarrazin, J.P. Vigneron, and J.M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Shamamian, V. A.

Shinya, Akihiko

Sigmund, Ole

Jakob S. Jensen and Ole Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2021–2023 (2004).
[Crossref]

Skolnick, M.S.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Skolnick, Maurce S.

Solgaard, Olav

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett “Electro-optical Effects in Silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

Steele, J.M.

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
[Crossref]

Stevenson, R. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Talneau, A.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Thio, T.

H.J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[Crossref] [PubMed]

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Thorhauge, M.

Tikhodeew, S. G.

S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Valentin, J.

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Vigneron, J.P.

W.V. Lousse and J.P. Vigneron, “Use of Fano resonances for bistable optical transfer through photonic crystal film,” Phys. Rev. B 69, 155106 (2004).
[Crossref]

M. Sarrazin, J.P. Vigneron, and J.M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Vigoureux, J.M.

M. Sarrazin, J.P. Vigneron, and J.M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

Villeneuve, Pierre R.

Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

Whittaker, D. M.

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

Whittaker, David M.

Wiaux, V.

Wolff, P.A.

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wood, R.W.

R.W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48, 928–936 (1935).
[Crossref]

Wouters, J.

Yablonskii, A. L.

S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Young, J.F.

Yuk Kei Ko, David

David Yuk Kei Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

Zhuang, Y. X.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

X. Checoury, P. Boucaud, J-M. Lourtioz, F. Pommereau, C. Cuisin, E. Derouin, O. Drisse, L. Legouezigou, F. Lelarge, F. Poingt, G. H. Duan, D. Mulin, S. Bonnefont, O. Gauthier-Lafaye, J. Valentin, F. Lozes, and A. Talneau, “Distributed feedback regime of photonic crystal waveguide lasers at 1.5 mm,” Appl. Phys. Lett. 85, 5502–5504 (2004).
[Crossref]

Yongqiang Jiang, Wei Jiang, Lanlan Gu, Xiaonan Chen, and Ray T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87, 221105–221107 (2005).
[Crossref]

V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M.S. Skolnick, T.F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000).
[Crossref]

Jakob S. Jensen and Ole Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2021–2023 (2004).
[Crossref]

Electron. Lett. (1)

A. Irace, G. Breglio, and A. Cutolo, “All-silicon optoelectronic modulator with 1 GHz switching capability,” Electron. Lett. 39, 232–233 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett “Electro-optical Effects in Silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

E. Moreno, L. Martin-Moreno, and F.J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A: Pure Appl. Opt. 8, S94–S97 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. (2)

U. Fano, “Effect of Configuration Interaction on Intensity and Phase Shifts,” Phys. Rev. 124, 1866–1878 (1961).
[Crossref]

R.W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48, 928–936 (1935).
[Crossref]

Phys. Rev. B (10)

David Yuk Kei Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945–9951 (1988).
[Crossref]

D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60, 2610–2618 (1999).
[Crossref]

Shanhui Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[Crossref]

S. G. Tikhodeew, A. L. Yablonskii, E. A. Muljarow, N. A. Gippius, and Teruya Ishihara, “Quasiguide modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002).
[Crossref]

Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[Crossref]

K. B. Crozier, Virginie Lousse, Onur Kilic, Sora Kim, Shanhui Fan, and Olav Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B 73, 115126 (2006).
[Crossref]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev. B 62, 16100–16108 (2000).
[Crossref]

W.V. Lousse and J.P. Vigneron, “Use of Fano resonances for bistable optical transfer through photonic crystal film,” Phys. Rev. B 69, 155106 (2004).
[Crossref]

M. Sarrazin, J.P. Vigneron, and J.M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[Crossref]

J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68, 205103 (2003).
[Crossref]

Phys. Rev. E (1)

A.E. Miroshnichenko and Y.S. Kivshar, “Engineering Fano resonances in discrete arrays,” Phys. Rev. E 72, 056611 (2005).
[Crossref]

Phys. Rev. Lett. (1)

W.L. Barnes, W.A. Murray, J. Dintinger, E. Devaux, and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 92, 107401 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Photonic crystal slab structure consisting of a square lattice of holes embedded into a uniform material.

Fig. 2.
Fig. 2.

Three Fano’s resonances at 1.9871a, 2.0658a and 2.0841a are shown. In particular, the top graph shows the variation of transmission in the wavelength region from 1.9a to 2.2a. The bottom graph shows the energy P calculated in a unit cell of PhCS. The energy peaks correspond to wavelength values roughly in between T=0 and T=1.

Fig. 3.
Fig. 3.

(a), (b) and (c) show the Sz distribution for each Fano resonance of Fig (2). The patterns cover four unit cells, which have a hole just in the center. (d) Distribution of the Poynting vector at the plane y/a=0.5, z0.

Fig. 4.
Fig. 4.

(a) Transmission spectrum of the incident light for s (top) and p (bottom) polarization. The incoming angle θ is from 0° to 80°, where zero means a beam parallel to the z axis. Narrow Fano resonances form several characteristic lines. (b) Relation between neff and incident light angle. Light is along ΓX direction. The dashed line denotes the X point, beyond which the mirror effect for neff is shown.

Fig. 5.
Fig. 5.

(a) Transmission and reflection spectra calculated at θ=0. The sharp lines show Fano resonances. The reduction of Si refractive index shifts the resonance lines to shorter wavelengths. (b) Transmission and reflection variation spectra. ΔT and ΔR are defined as T(n0+Δn)-T(n0) and R(n0+Δn)-R(n0). At Fano wavelengths strong changes of T and R are possible. Variation range of Si index is from 0 to -0.01. The range of wavelength is from 1.97a to 2.12a.

Fig. 6.
Fig. 6.

(a) Sketch of 0th and 1st order scattered light directions. Incident light, 0th, and 1st order scattered light are denoted by heavy, dot and thin line, respectively. (b) Power flux spectrum of 0th and 1st order transmitted light. Dot and solid lines represent 0th and 1st order transmitted light, respectively. (c) Power flux ratio between 1st and 0th order transmitted light. (d) and (e) describe the reflection case. Figs. (b), (c), (d) and (e) consist of five graphs each, corresponding to variations of Si refractive index in the interval [-0.001, -0.009].

Fig. 7.
Fig. 7.

Transmission (top) and reflection (bottom) spectra for different incident polarizations. ϕ is the angle between electric field angle and x axis.

Fig. 8.
Fig. 8.

(a) and (b) show transmission spectra at varies temperatures for E‖y and E‖x, respectively. The differences are due to the anisotropic nature of KTP. Each graph consists of ten curves. Temperature is increased from 20°C to 200°C with constant steps of 20°C. The dot line shows the relation between Fano resonance wavelengths and temperature.

Fig. 9.
Fig. 9.

Fano resonant wavelength λf versus temperature. The graph shows linear dependence of λf2 with T2, namely linear relation between λf and temperature. In abscissa is plotted T2-400 to be consistent with Eq. 18.

Equations (39)

Equations on this page are rendered with MathJax. Learn more.

× E = i ω B , × H = i ω D , · B = 0 , · D = 0
z E + ( y x ) e z = i ω μ 0 ( μ xx μ xy μ yx μ yy ) H + i ω μ 0 ( μ xz μ yz ) h z
( x y ) E = i ω μ 0 ( μ zx μ zy ) H + i ω μ 0 μ zz h z
z H + ( x y ) h z = i ω ε 0 ( ε yy ε yx ε xy ε xx ) H i ω ε 0 ( ε yz ε xz ) e z
( y x ) H = i ω ε 0 ( ε zy ε zx ) E i ω ε 0 ε zz e z
z H + i F ( 1 ) H = ik 0 ω μ 0 [ F ( 0 ) E ]
z E + i T ( 1 ) E = i ω μ 0 k 0 [ T ( 0 ) H ]
F ̂ ( 1 ) = ( x y ) μ zz 1 ( μ zx μ zy ) ( ε yz ε xz ) ε zz 1 ( y x )
F ̂ ( 0 ) = ( ε yy ε yx ε xy ε xx ) ( ε yz ε xz ) ε zz 1 ( ε zy ε zx ) ( x y ) μ zz 1 ( x y )
T ̂ ( 1 ) = ( μ xz μ yz ) μ zz 1 ( x y ) ( y x ) ε zz 1 ( ε zy ε zx )
T ̂ ( 0 ) = ( μ xx μ xy μ yx μ yy ) + ( μ xz μ yz ) μ zz 1 ( μ zx μ zy ) ( y x ) ε zz 1 ( y x )
H ( r ) = G k + G H ( G ) exp ( i β z )
E ( r ) = G k + G E ( G ) exp ( i β z )
ε ( r ) = G V G exp [ i ( k + G ) · r ]
μ ( r ) = G U G exp [ i ( k + G ) · r ]
V G G = k + G ε ( r ) k + G = V G , G
U G G = k + G μ ( r ) k + G = U G , G
k + G PQ k + G = G P G , G · Q G , G
F ( 1 ) = ( diag ( k x + G x ) diag ( k y + G y ) ) U zz 1 ( U zx U zy ) + ( V yz V xz ) V zz 1 ( diag ( k y + G y ) diag ( k x + G x ) )
F ( 0 ) = ( V yy V yx V xy V xx ) ( V yz V xz ) V zz 1 ( V zy V zx )
( diag ( k x + G x ) diag ( k y + G y ) ) U zz 1 ( diag ( k x + G x ) diag ( k y + G y ) )
T ( 1 ) = ( U xz U yz ) U zz 1 ( diag ( k x + G x ) diag ( k y + G y ) ) + ( diag ( k y + G y ) diag ( k x + G x ) ) V zz 1 ( V zy V zx )
T ( 0 ) = ( U xx U xy U yx U yy ) + ( U xz U yz ) U zz 1 ( U zx U zy )
( diag ( k y + G y ) diag ( k x + G x ) ) V zz 1 ( diag ( k y + G y ) diag ( k x + G x ) )
H ( G ) β 2 + [ F ( 1 ) + F ( 0 ) T ( 1 ) ( F ( 0 ) ) 1 ] H ( G ) β + [ F ( 0 ) T ( 1 ) ( F ( 0 ) ) 1 F ( 1 ) F ( 0 ) T ( 0 ) ] H ( G ) = O
E ( G ) β 2 + [ T ( 1 ) + T ( 0 ) F ( 1 ) ( T ( 0 ) ) 1 ] E ( G ) β + [ T ( 0 ) F ( 1 ) ( T ( 0 ) ) 1 T ( 1 ) T ( 0 ) F ( 0 ) ] E ( G ) = O
H ( G ) β 2 F ( 0 ) T ( 0 ) H ( G ) = O
E ( G ) β 2 T ( 0 ) F ( 0 ) E ( G ) = O
F ( 0 ) = ( V O O V ) ( diag ( k x + G x ) diag ( k y + G y ) ) U 1 ( diag ( k x + G x ) diag ( k y + G y ) )
T ( 0 ) = ( U O O U ) ( diag ( k y + G y ) diag ( k x + G x ) ) V 1 ( diag ( k y + G y ) diag ( k x + G x ) )
F ( 0 ) = ( V yy V yx V xy V xx ) ( diag ( k x + G x ) diag ( k y + G y ) ) U zz 1 ( diag ( k x + G x ) diag ( k y + G y ) )
T ( 0 ) = ( U xx U xy U yx U yy ) ( diag ( k y + G y ) diag ( k x + G x ) ) V zz 1 ( diag ( k y + G y ) diag ( k x + G x ) )
H ( r ) = G , j k + G [ H , j ( + ) ( G ) a j exp ( i β j ( + ) z ) + H , j ( ) ( G ) b j exp ( i β j ( ) z ) ]
E ( r ) = G , j k + G [ E , j ( + ) ( G ) a j exp ( i β j ( + ) z ) + E , j ( ) ( G ) b j exp ( i β j ( ) z ) ]
( E ( + ) ( G ) E ( ) ( G ) H ( + ) ( G ) H ( ) ( G ) ) ( a b ) = ( E ( ) ( G ) E ( + ) ( G ) H ( ) ( G ) H ( + ) ( G ) ) ( b a )
S ( a b ) = ( b a ) ,
S = ( E ( ) ( G ) E ( + ) ( G ) H ( ) ( G ) H ( + ) ( G ) ) 1 ( E ( + ) ( G ) E ( ) ( G ) H ( + ) ( G ) H ( ) ( G ) )
P = cell 1 2 ( D * · E + B * · H ) dV
n i 2 ( λ , T ) = a i + β i ( T 2 400 ) + b i + δ i ( T 2 400 ) λ 2 c i + ϕ i ( T 2 400 ) λ 2 [ d i + ρ i ( T 2 400 ) ]

Metrics