Abstract

The nano-imprint lithography method was employed to incorporate wide-area (375×330µm2) photonic-crystal (PC) patterns onto the top surface of GaN-based LEDs. When the 280-nm-thick p-GaN was partly etched to ~140nm, the maximal extraction-efficiency was observed without deteriorating electrical properties. After epoxy encapsulation, the light output of the PC LED was enhanced by 25% in comparison to the standard LED without pattern, at a standard current of 20mA. By three-dimensional finite-difference time-domain method, we found that the extraction efficiency of the LED tends to be saturated as the etch-depth in the GaN epitaxial-layer becomes larger than the wavelength of the guided modes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
    [CrossRef]
  2. E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, "Optimizing the external light extraction of nitride LEDs," in Solid State Lighting II, I. T. Ferguson, N. Narendran, S. P. DenBaars, Y.-S. Park, eds., Proc. SPIE 4776, 223 234 (2002).
    [CrossRef]
  3. Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
    [CrossRef]
  4. Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
    [CrossRef]
  5. K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
    [CrossRef]
  6. Y. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466 (2004).
    [CrossRef]
  7. L. Chen, and A. V. Nurmikko, "Fabrication and performance of efficient blue light emitting III-nitride photonic crystals," Appl. Phys. Lett. 85, 3663 (2004).
    [CrossRef]
  8. A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
    [CrossRef]
  9. W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
    [CrossRef]
  10. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q-Han Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns," Appl. Phys. Lett. 87, 203508 (2005)
    [CrossRef]
  11. The issue on the lattice constant will be described in the other paper.
  12. L Jay Guo, "Recent progress in nanoimprint technology and its applications," J. Phys. D Appl. Phys. 37, R123 (2004)
    [CrossRef]

2006 (1)

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

2005 (1)

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

2004 (4)

L Jay Guo, "Recent progress in nanoimprint technology and its applications," J. Phys. D Appl. Phys. 37, R123 (2004)
[CrossRef]

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Y. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466 (2004).
[CrossRef]

L. Chen, and A. V. Nurmikko, "Fabrication and performance of efficient blue light emitting III-nitride photonic crystals," Appl. Phys. Lett. 85, 3663 (2004).
[CrossRef]

2003 (2)

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

1999 (1)

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Ahmed, F.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Bhat, J. C.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Bour, D. P.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Chen, L.

L. Chen, and A. V. Nurmikko, "Fabrication and performance of efficient blue light emitting III-nitride photonic crystals," Appl. Phys. Lett. 85, 3663 (2004).
[CrossRef]

Chen, Y. C.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Cheung, N. W.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Cho, S. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

David, A.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

DenBaars, S. P.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

Diana, F. S.

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

Do, Y. R.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Fujii, T.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Hu, E.

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

Hu, E. L.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Huh, J.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Jay Guo, L

L Jay Guo, "Recent progress in nanoimprint technology and its applications," J. Phys. D Appl. Phys. 37, R123 (2004)
[CrossRef]

Jiang, H. X.

Y. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466 (2004).
[CrossRef]

Johnson, N. M.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Kim, A. Y.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Kim, G. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Kim, K. H.

Y. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466 (2004).
[CrossRef]

Kim, S. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Kim, Y. C.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Kneissl, M.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Krames, M. R.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Lee, Y. H.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Lee, Y. J.

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Lin, J. Y.

Y. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466 (2004).
[CrossRef]

Ludowise, M. J.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Martin, P. S.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Mcgroody, K.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Mei, P.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Meier, C.

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

Misra, M. S.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Mueller, G. O.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Nakamura, S.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Nurmikko, A. V.

L. Chen, and A. V. Nurmikko, "Fabrication and performance of efficient blue light emitting III-nitride photonic crystals," Appl. Phys. Lett. 85, 3663 (2004).
[CrossRef]

Oder, Y. N.

Y. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466 (2004).
[CrossRef]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Romando, L. T.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Sands, T.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Sharma, R.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

Shvartster, A.

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Stockman, S. A.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Weisbuch, C.

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

Wierer, J. J.

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Wong, W. S.

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

Appl. Phys. Lett. (7)

A. David, T. Fujii, R. Sharma, K. Mcgroody, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, "Photonic-crystal GaN light-emitting diodes with tailored guided mode distribution," Appl. Phys. Lett. 88, 061124 (2006).
[CrossRef]

Y. C. Chen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221 (2003).
[CrossRef]

Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, "A high-extraction-efficiency nanopatterned organic light-emitting diode," Appl. Phys. Lett. 82, 3779 (2003).
[CrossRef]

Y. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466 (2004).
[CrossRef]

L. Chen, and A. V. Nurmikko, "Fabrication and performance of efficient blue light emitting III-nitride photonic crystals," Appl. Phys. Lett. 85, 3663 (2004).
[CrossRef]

A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, and C. Weisbuch, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107 (2005).
[CrossRef]

W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romando, and N. M. Johnson, "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Appl. Phys. Lett. 75, 1360 (1999)
[CrossRef]

J. Phys. D Appl. Phys. (1)

L Jay Guo, "Recent progress in nanoimprint technology and its applications," J. Phys. D Appl. Phys. 37, R123 (2004)
[CrossRef]

Nature (1)

K. Okamoto, I. Niki, A. Shvartster, Y. Narukawa, T. Mukai, and A. Scherer," Nature 3, 601 (2004).
[CrossRef]

Other (3)

E. Stefanov, B. S. Shelton, H. S. Venugopalan, T. Zhang, and I. Eliashevich, "Optimizing the external light extraction of nitride LEDs," in Solid State Lighting II, I. T. Ferguson, N. Narendran, S. P. DenBaars, Y.-S. Park, eds., Proc. SPIE 4776, 223 234 (2002).
[CrossRef]

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q-Han Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns," Appl. Phys. Lett. 87, 203508 (2005)
[CrossRef]

The issue on the lattice constant will be described in the other paper.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Schematic of a photonic-crystal (PC) GaN-based LED. The PC patterns are employed on the top surface of the GaN LED. (b) Top-view scanning electron microscope (SEM) image of a nanoimprinted PC GaN-LED. The lattice constant (a) is 1200nm and the radius of holes are 0.25a.

Fig. 2.
Fig. 2.

(a). Snap shots of the calculated electric-field distribution of the GaN LED without PC (top) and with PC (bottom). The gray bars at the side edges represent perfect-mirrors with reflectance of 100%. Particularly, the thickness of the sapphire substrate is shrunk down to 1.5µm because of the limited memory size. (b) The vertically-extracted efficiency of the PC GaN-LED with various etch-depths as a function of the propagation-distance. The extraction-efficiency is defined as a ratio of the energy through the top GaN surface and the total generated energy. This simulation is performed by the 3D-FDTD method. (c) The vertical extraction-efficiency as a function of the lattice constant. The extraction efficiency is an integrated value till the light propagates 30µm. The etch-depths are 140nm in all cases.

Fig. 3.
Fig. 3.

(a). A typical near-field image for shallow-etched (p-GaN 140nm-etch) PC GaN-LED. It shows the uniform radiation over the whole surface. (b) The measured relative-enhancement as a function of etch-depth. When the device is etched deeper than the MQWs, almost no light emission is observed.

Fig. 4.
Fig. 4.

(a). The entire L-I characteristics of the normal LED (unfilled circles) and the PC LED for 140nm etch-depth of p-GaN (filled squares) and the PC LED for 200nm etch-depth of p-GaN (filled diamonds). The relative enhancement of PC LED is 25% at a standard current of 20mA. (b) IV characteristics of the normal LED (unfilled circles) and the PC LED (filled squares). For the p-GaN 140-nm-etched device, the electrical properties (Vop, slope) are hardly changed.

Metrics