Abstract

The accurate calibration of the force constant of the probe in atomic force microscopy and optical tweezers applications is extremely important for force spectroscopy. The commonly used silicon detectors exhibit a complex transfer function for wavelengths >850 nm, which limits the detection bandwidth leading to serious errors in the force constant determination. We show that this low-pass effect can be compensated for using the frequency response of the detector. This is applicable for calibrations in both atomic force microscopy and optical tweezers. For optical tweezers an additional correction method is discussed based on fitting an expression in which the low-pass characteristics are already accounted for.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dependence of silicon position-detector bandwidth on wavelength, power, and bias

J. H. G. Huisstede, B. D. van Rooijen, K. O. van der Werf, M. L. Bennink, and V. Subramaniam
Opt. Lett. 31(5) 610-612 (2006)

Calibrating optical tweezers with Bayesian inference

Maximilian U. Richly, Silvan Türkcan, Antoine Le Gall, Nicolas Fiszman, Jean-Baptiste Masson, Nathalie Westbrook, Karen Perronet, and Antigoni Alexandrou
Opt. Express 21(25) 31578-31590 (2013)

Determination of the force constant of a single-beam gradient trap by measurement of backscattered light

M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden
Appl. Opt. 35(36) 7112-7116 (1996)

References

  • View by:
  • |
  • |
  • |

  1. G. U. Lee, D. A. Kidwell, and R. J. Colton, “Sensing discrete streptavidin biotin interactions with atomic-force microscopy,” Langmuir 10354–357 (1994).
    [Crossref]
  2. P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
    [Crossref] [PubMed]
  3. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
    [Crossref] [PubMed]
  4. D. J. Muller, W. Baumeister, and A. Engel, “Controlled unzipping of a bacterial surface layer with atomic force microscopy,” PNAS 96, 13170–13174 (1999).
    [Crossref] [PubMed]
  5. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
    [Crossref]
  6. S. B. Smith, Y. J. Cui, and C. Bustamante,“Overstretching b-dna: The elastic response of individual double-stranded and single-stranded dna molecules,” Science 271, 795–799 (1996).
    [Crossref] [PubMed]
  7. M. S. Z. Kellermayer and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 277, 1117–1117 (1997).
  8. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
    [Crossref] [PubMed]
  9. M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
    [Crossref] [PubMed]
  10. E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
    [Crossref] [PubMed]
  11. F. Reif. Fundamentals of statistical and thermal physics. McGraw-Hill, New York, 1965.
  12. K. Berg-Sorensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167–3176 (2003).
    [Crossref]
  13. E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 743246–3249 (2003).
    [Crossref]
  14. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  15. J.H.G. Huisstede, B.D. van Rooijen, K.O. van der Werf, M.L. Bennink, and V. Subramaniam, “Dependence of silicon position-detector bandwidth on wavelength, power, and bias,” Opt. Lett. 31, 610–612 (2006).
    [Crossref] [PubMed]
  16. K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
    [Crossref]
  17. R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
    [Crossref] [PubMed]
  18. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
    [Crossref]
  19. K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
    [Crossref]
  20. J. H. G. Huisstede, K. O. van derWerf, M. L. Bennink, and V. Subramaniam, “Force detection in optical tweezers using backscattered light,” Opt. Express 13, 1113–1123 (2005).
    [Crossref] [PubMed]

2006 (1)

2005 (3)

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

J. H. G. Huisstede, K. O. van derWerf, M. L. Bennink, and V. Subramaniam, “Force detection in optical tweezers using backscattered light,” Opt. Express 13, 1113–1123 (2005).
[Crossref] [PubMed]

2004 (2)

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

2003 (2)

K. Berg-Sorensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167–3176 (2003).
[Crossref]

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 743246–3249 (2003).
[Crossref]

2001 (2)

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

2000 (1)

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

1999 (1)

D. J. Muller, W. Baumeister, and A. Engel, “Controlled unzipping of a bacterial surface layer with atomic force microscopy,” PNAS 96, 13170–13174 (1999).
[Crossref] [PubMed]

1997 (2)

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
[Crossref] [PubMed]

M. S. Z. Kellermayer and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 277, 1117–1117 (1997).

1996 (2)

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
[Crossref] [PubMed]

S. B. Smith, Y. J. Cui, and C. Bustamante,“Overstretching b-dna: The elastic response of individual double-stranded and single-stranded dna molecules,” Science 271, 795–799 (1996).
[Crossref] [PubMed]

1994 (2)

G. U. Lee, D. A. Kidwell, and R. J. Colton, “Sensing discrete streptavidin biotin interactions with atomic-force microscopy,” Langmuir 10354–357 (1994).
[Crossref]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

1993 (1)

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

Abbondanzieri, E. A.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Anderson, D. L.

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

Baumeister, W.

D. J. Muller, W. Baumeister, and A. Engel, “Controlled unzipping of a bacterial surface layer with atomic force microscopy,” PNAS 96, 13170–13174 (1999).
[Crossref] [PubMed]

Baumgartner, W.

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
[Crossref] [PubMed]

Bennink, M. L.

J. H. G. Huisstede, K. O. van derWerf, M. L. Bennink, and V. Subramaniam, “Force detection in optical tweezers using backscattered light,” Opt. Express 13, 1113–1123 (2005).
[Crossref] [PubMed]

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

Bennink, M.L.

Berg-Sorensen, K.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

K. Berg-Sorensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167–3176 (2003).
[Crossref]

Block, S. M.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

Bustamante, C.

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

M. S. Z. Kellermayer and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 277, 1117–1117 (1997).

S. B. Smith, Y. J. Cui, and C. Bustamante,“Overstretching b-dna: The elastic response of individual double-stranded and single-stranded dna molecules,” Science 271, 795–799 (1996).
[Crossref] [PubMed]

Colton, R. J.

G. U. Lee, D. A. Kidwell, and R. J. Colton, “Sensing discrete streptavidin biotin interactions with atomic-force microscopy,” Langmuir 10354–357 (1994).
[Crossref]

Cui, Y. J.

S. B. Smith, Y. J. Cui, and C. Bustamante,“Overstretching b-dna: The elastic response of individual double-stranded and single-stranded dna molecules,” Science 271, 795–799 (1996).
[Crossref] [PubMed]

de Grooth, B. G.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

de Grooth, B.G.

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

Engel, A.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

D. J. Muller, W. Baumeister, and A. Engel, “Controlled unzipping of a bacterial surface layer with atomic force microscopy,” PNAS 96, 13170–13174 (1999).
[Crossref] [PubMed]

Fernandez, J. M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
[Crossref] [PubMed]

Florin, E. L.

K. Berg-Sorensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167–3176 (2003).
[Crossref]

Flyvbjerg, H.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

K. Berg-Sorensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167–3176 (2003).
[Crossref]

Gaub, H. E.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
[Crossref] [PubMed]

Gautel, M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
[Crossref] [PubMed]

Greenleaf, W. J.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Greve, J.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

Grimes, S.

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

Gruber, H. J.

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
[Crossref] [PubMed]

Hinterdorfer, P.

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
[Crossref] [PubMed]

Huisstede, J. H. G.

Huisstede, J.H.G.

Hunter, C. N.

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

Kapitein, L. C.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 743246–3249 (2003).
[Crossref]

Kassies, R.

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

Kellermayer, M. S. Z.

M. S. Z. Kellermayer and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 277, 1117–1117 (1997).

Kidwell, D. A.

G. U. Lee, D. A. Kidwell, and R. J. Colton, “Sensing discrete streptavidin biotin interactions with atomic-force microscopy,” Langmuir 10354–357 (1994).
[Crossref]

Landick, R.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Lee, G. U.

G. U. Lee, D. A. Kidwell, and R. J. Colton, “Sensing discrete streptavidin biotin interactions with atomic-force microscopy,” Langmuir 10354–357 (1994).
[Crossref]

Lenferink, A.

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

Leno, G. H.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

Leuba, S. H.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

Muller, D. J.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

D. J. Muller, W. Baumeister, and A. Engel, “Controlled unzipping of a bacterial surface layer with atomic force microscopy,” PNAS 96, 13170–13174 (1999).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Oddershede, L.

K. Berg-Sorensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167–3176 (2003).
[Crossref]

Oesterhelt, D.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

Oesterhelt, F.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
[Crossref] [PubMed]

Olsen, J. D.

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

Otto, C.

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

Peterman, E. J. G.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 743246–3249 (2003).
[Crossref]

Pfeiffer, M.

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

Putman, C.A.J.

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

Reif, F.

F. Reif. Fundamentals of statistical and thermal physics. McGraw-Hill, New York, 1965.

Rief, M.

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
[Crossref] [PubMed]

Schilcher, K.

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
[Crossref] [PubMed]

Schindler, H.

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
[Crossref] [PubMed]

Schipper, E.H.

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

Schmidt, C. F.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 743246–3249 (2003).
[Crossref]

Segerink, F.B.

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

Shaevitz, J. W.

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

Smith, D. E.

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

Smith, S. B.

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

S. B. Smith, Y. J. Cui, and C. Bustamante,“Overstretching b-dna: The elastic response of individual double-stranded and single-stranded dna molecules,” Science 271, 795–799 (1996).
[Crossref] [PubMed]

Subramaniam, V.

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

Tans, S. J.

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

van der Werf, K.O.

J.H.G. Huisstede, B.D. van Rooijen, K.O. van der Werf, M.L. Bennink, and V. Subramaniam, “Dependence of silicon position-detector bandwidth on wavelength, power, and bias,” Opt. Lett. 31, 610–612 (2006).
[Crossref] [PubMed]

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

van derWerf, K. O.

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

J. H. G. Huisstede, K. O. van derWerf, M. L. Bennink, and V. Subramaniam, “Force detection in optical tweezers using backscattered light,” Opt. Express 13, 1113–1123 (2005).
[Crossref] [PubMed]

van Dijk, M. A.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 743246–3249 (2003).
[Crossref]

van Hulst, N.F.

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

van Rooijen, B.D.

Zlatanova, J.

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

Ann. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Ann. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).
[Crossref]

J. Appl. Phys. (1)

K. Berg-Sorensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, “Unintended filtering in a typical photodiode detection system for optical tweezers,” J. Appl. Phys. 93, 3167–3176 (2003).
[Crossref]

J. Microsc. (1)

R. Kassies, K. O. van derWerf, A. Lenferink, C. N. Hunter, J. D. Olsen, V. Subramaniam, and C. Otto, “Combined afm and confocal fluorescence microscope for applications in bio-nanotechnology,” J. Microsc. 217, 109–16 (2005).
[Crossref] [PubMed]

Langmuir (1)

G. U. Lee, D. A. Kidwell, and R. J. Colton, “Sensing discrete streptavidin biotin interactions with atomic-force microscopy,” Langmuir 10354–357 (1994).
[Crossref]

Nat. Struct. Biol. (1)

M. L. Bennink, S. H. Leuba, G. H. Leno, J. Zlatanova, B. G. de Grooth, and J. Greve, “Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers,” Nat. Struct. Biol. 8, 606–610 (2001).
[Crossref] [PubMed]

Nature (2)

E. A. Abbondanzieri, W. J. Greenleaf, J. W. Shaevitz, R. Landick, and S. M. Block, “Direct observation of base-pair stepping by rna polymerase,” Nature 438, 460–465 (2005).
[Crossref] [PubMed]

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, and C. Bustamante, “The bacteriophage phi 29 portal motor can package dna against a large internal force,” Nature 413748–752 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

PNAS (2)

P. Hinterdorfer, W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, “Detection and localization of individual antibody-antigen recognition events by atomic force microscopy,” PNAS 93, 3477–3481 (1996).
[Crossref] [PubMed]

D. J. Muller, W. Baumeister, and A. Engel, “Controlled unzipping of a bacterial surface layer with atomic force microscopy,” PNAS 96, 13170–13174 (1999).
[Crossref] [PubMed]

Rev. Sci. Instrum. (4)

K.O. van der Werf, C.A.J. Putman, B.G. de Grooth, F.B. Segerink, E.H. Schipper, N.F. van Hulst, and J. Greve, “Compact standalone atomic force microscope,” Rev. Sci. Instrum. 642892 (1993).
[Crossref]

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, “Extending the bandwidth of optical-tweezers interferometry,” Rev. Sci. Instrum. 743246–3249 (2003).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Science (4)

F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engel, H. E. Gaub, and D. J. Muller, “Unfolding pathways of individual bacteriorhodopsins,” Science 288143–146 (2000).
[Crossref]

S. B. Smith, Y. J. Cui, and C. Bustamante,“Overstretching b-dna: The elastic response of individual double-stranded and single-stranded dna molecules,” Science 271, 795–799 (1996).
[Crossref] [PubMed]

M. S. Z. Kellermayer and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science 277, 1117–1117 (1997).

M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by afm,” Science 276, 1109–1112 (1997).
[Crossref] [PubMed]

Other (1)

F. Reif. Fundamentals of statistical and thermal physics. McGraw-Hill, New York, 1965.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Power spectral densities of a cantilever measured in an AFM with a laserdiode operating at 785 nm (blue curve) and a hybrid AFM/optical microscope with a laserdiode operating at 1050 nm (red curve). For the latter application a version of the curve corrected for the low-pass effect of the detector is shown (green curve). The gain of the detector used for correction is depicted by the black curve.

Fig. 2.
Fig. 2.

Power spectral density of the deflection signal of a 2.67 µm polystyrene bead in an optical trap recorded with the SPOT9DMI (black circles). The spectrum corrected for the detector response is also plotted (blue triangulars). Furthermore the Lorentzian fit to the spectrum recorded with the SPOT9DMI including the model described by Eq. 2 (red curve) and without the model (green curve) is shown.

Fig. 3.
Fig. 3.

Frequency response of the DL100-7-KER, the DLS10 and the SPOT9DMI determined with the LED-wobbler at 500 and 50 µW at 1070 nm. The dashed lines are the corresponding fits using Eq. 2. For the DLS10 the fit range was limited to 15 kHz, for the SPOT9-DMI to 10 kHz and for the DL100-7-KER to 45 kHz.

Tables (1)

Tables Icon

Table 1. Optical trap stiffness values determined by curve-fitting the power spectral density with a Lorentzian function. The power spectra for all detectors are obtained for the same 2.67 µm polystyrene bead. Two corrections methods for the low-pass effect of a silicon detector were investigated and compared with the situation where no corrections are applied.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S x = D π 2 f 2 + f c 2
P diode = α 2 + 1 α 2 1 + ( f f diode ) 2

Metrics