Abstract

Femtosecond laser pulses used in a regime below the ablation threshold have two noticeable effects on Fused Silica (a-SiO2): they locally increase the material refractive index and modify its HF etching selectivity. The nature of the structural changes induced by femtosecond laser pulses in fused silica is not fully understood. In this paper, we report on nanoindentation and birefringence measurements on fused silica exposed to low-energy femtosecond laser pulses. Our findings further back the hypothesis of localized densification effect even at low energy regime.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
    [CrossRef]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  3. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond Laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
    [CrossRef]
  4. A. Strelsov and N. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  5. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
    [CrossRef]
  6. Y. Bellouard, A. Said, M. Dugan and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004).
    [CrossRef] [PubMed]
  7. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
    [CrossRef]
  8. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
    [CrossRef]
  9. W. C. Oliver and G. M. Phar, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," J. Mater. Res. 19, 3-20 (2004).
    [CrossRef]
  10. P. Bado, A. Said, M. Dugan, T. Sosnowski, and S. Wright "Dramatic improvements in waveguide manufacturing with femtosecond lasers," in NFOEC, Dallas, Sept. 2002.
  11. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. Limberger, R.-P. Salathé, and C. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005).
    [CrossRef] [PubMed]
  12. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
    [CrossRef] [PubMed]
  13. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, and C. Depeursinge, "Numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A doc. ID 69126, (posted 5 July 2006, in press).
    [CrossRef]
  14. E. Cuche, P. Marquet, and C. Depeursinge, "Spatial filtering for zero-order and twin-image elimination in digital off-axis holography," Appl. Opt. 39, 4070-4075 (2000).
    [CrossRef]

2006

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

2005

2004

Y. Bellouard, A. Said, M. Dugan and P. Bado, "Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004).
[CrossRef] [PubMed]

W. C. Oliver and G. M. Phar, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," J. Mater. Res. 19, 3-20 (2004).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
[CrossRef]

2002

2001

2000

1997

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

1996

Aspert, N.

Bado, P.

Bellouard, Y.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Borrelli, N.

Charrière, F.

Colomb, T.

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Cuche, E.

Davis, K. M.

Depeursinge, C.

Du, D.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Dugan, M.

Dürr, F.

Gamaly, E. G.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
[CrossRef]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
[CrossRef]

Hirao, K.

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Juodkazis, S.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
[CrossRef]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond Laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
[CrossRef]

Kühn, J.

Limberger, H.

Liu, X.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
[CrossRef]

Marcinkevicius, A.

Marquet, P.

Matsuo, S.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
[CrossRef]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond Laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
[CrossRef]

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
[CrossRef]

A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond Laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001).
[CrossRef]

Miura, K.

Miwa, M.

Mizeikis, V.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
[CrossRef]

Montfort, F.

Mourou, G.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

Nishii, J.

Oliver, W. C.

W. C. Oliver and G. M. Phar, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," J. Mater. Res. 19, 3-20 (2004).
[CrossRef]

Phar, G. M.

W. C. Oliver and G. M. Phar, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," J. Mater. Res. 19, 3-20 (2004).
[CrossRef]

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Said, A.

Salathé, R.-P.

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Strelsov, A.

Sugimoto, N.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Watanabe, M.

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. A

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, "Formation of embedded patterns in glasses using femtosecond irradiation," Appl. Phys. A 79, 1549 (2004).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006).
[CrossRef]

Appl. Phys. Lett.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly and B. Luther-Davies, "Laser induced microexplosion confined in a bulk of silica: Formation of nanovoids," Appl. Phys. Lett. 88, 201909 (2006).
[CrossRef]

IEEE J. Quantum Electron.

X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE J. Quantum Electron. 33, 1706-1716 (1997).
[CrossRef]

J. Mater. Res.

W. C. Oliver and G. M. Phar, "Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology," J. Mater. Res. 19, 3-20 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, and C. Depeursinge, "Numerical parametric lens for shifting, magnification and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A doc. ID 69126, (posted 5 July 2006, in press).
[CrossRef]

P. Bado, A. Said, M. Dugan, T. Sosnowski, and S. Wright "Dramatic improvements in waveguide manufacturing with femtosecond lasers," in NFOEC, Dallas, Sept. 2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the sample preparation: Step 1, straight lines patterns are written in a piece of fused silica at a depth of 400um; Step 2: the specimen is cut in its middle; Step 3: Nanoindentation experiments. A typical loading/unloading force displacement curve is shown. With CSM technique [9], the stiffness is measured continuously during loading.

Fig. 2.
Fig. 2.

Example of a nanoindentation mark on laser patterns (scale bar is 10 μm, all three pictures have the same size). The laser patterns are clearly visible under or next to the nanoindenter print.

Fig. 3.
Fig. 3.

Overview of nanoindentation tests.

Fig. 4.
Fig. 4.

(a). presents the Pol-DHM set-up designed for transmission imaging with a He-Ne laser source emitting at 633 nm. The basic architecture is that of a Mach-Zehnder interferometer with two orthogonally linearly polarized reference waves R 1 and R 2 that interfere with an object wave O in off-axis geometry as presented in Fig. 4(b). The state of polarization (SOP) of the object wave O results from the sample birefringence properties integrated along the propagation direction and of the SOP and depends on the illuminating wave Oin. The linear polarization of Oin is oriented at 45° with a polarizer [Pol. 45° in Fig. 4(a)]. The position of the sample is adjusted to produce a magnified image of the sample with a X63 microscope objective (MO) at a distance d behind the CCD (d ≅ 5 cm).

Fig. 5.
Fig. 5.

Measurement of the phase difference along a line perpendicular to a single laser track. The pol-DHM obtained image is shown on the upper right corner.

Fig. 6.
Fig. 6.

Phase difference measurement on a set of parallel laser tracks.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

O = ( o 1 exp ( i ϕ o ) o 2 exp i ( ϕ o + Δ φ o ) 0 ) = ( o 1 o 2 0 ) exp [ i ϕ o ] ,
R 1 = ( r 1 0 0 ) , R 2 = ( 0 r 2 0 )
{ n x = n x 0 C 1 σ x C 2 ( σ y + σ z ) n y = n y 0 C 1 σ y C 2 ( σ x + σ z )
Δ σ = σ x σ y = λ Δ φ 2 π t ( C 2 C 1 )

Metrics