Abstract

The wavelength regime of the circular Bragg phenomenon, exhibited by chiral sculptured thin films fabricated using the serial bideposition technique, blue shifts as a result of post-deposition annealing. This blue shift can be attributed to the net effect of three material changes that occur during annealing: a small reduction in helical pitch, an increase in the relative permittivity of the column material changing from amorphous to crystalline, and a density reduction due to columnar thinning from the same amorphous-to-crystalline transition.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Laktakia and R. Messier, "The key to a thin film HBM: the Motohiro-Taga interface," in Proceedings of Chiral ’94: 3rd International Workshop on Chiral, Bi-Isotropic and Bi-Anisotropic Media, F. Mariotte and J.-P. Parneix, eds., Perigueux, France, pp. 125-130 (1994).
  2. A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).
  3. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005).
    [CrossRef]
  4. I. Hodgkinson and Q. H. Wu, "Inorganic chiral optical materials," Adv. Mater. 13, 889-897 (2001).
    [CrossRef]
  5. S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
    [CrossRef]
  6. A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.
  7. V. C. Venugopal and A. Lakhtakia, "Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums," Proc. R. Soc. Lond. A 456, 125-161 (2000).
    [CrossRef]
  8. A. Lakhtakia, "Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions," Optik 112, 145-148 (2001).
    [CrossRef]
  9. Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
    [CrossRef]
  10. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000).
    [CrossRef]
  11. N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
    [CrossRef]
  12. M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004).
    [CrossRef]
  13. C. Ting and S. Chen, "Structure evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," J. Appl. Phys 88, 4628-4633 (2000).
    [CrossRef]
  14. Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
    [CrossRef]
  15. A. C. van Popta, J. C. Sit, and M. J. Brett, "Optical properties of porous helical thin films and the effects of post-deposition annealing," in Organic Optoelectronics and Photonics, P. L. Heremans, M. Muccini, and H. Hofstraat, eds., Proc. SPIE 5464, 198-208 (2004).
    [CrossRef]
  16. M. Suzuki, T. Ito, and Y. Taga, "Morphological stability of TiO2 thin films with isolated columns," Jpn. J. Appl. Phys.  40, L398-L400 (2001).
    [CrossRef]
  17. I. Hodgkinson, Q. H. Wu, and K. M. McGrath, "Moisture adsorption effects in biaxial and chiral optical thin film coatings," in Engineered Nanostructural Films and Materials, A. Lakhtakia, and R. F. Messier, eds., Proc. SPIE 3790, 184-194 (1999).
    [CrossRef]
  18. H. Selhofer, E. Ritter, and R. Linsbod, "Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials," Appl. Opt. 41, 756-762 (2002).
    [CrossRef] [PubMed]
  19. C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).
  20. J. A. Sherwin, A. Lakhtakia, and I. Hodgkinson, "On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements," Opt. Commun. 209, 369-375 (2002).
    [CrossRef]
  21. R. Messier and R. C. Ross, "Evolution of microstucture in amorphous hydrogenated silicon," J. Appl. Phys. 53, 6220-6225 (1982).
    [CrossRef]
  22. R. Messier and J. E. Yehoda, "Geometry of thin film morphology," J. Appl. Phys. 58, 3739-3746 (1985).
    [CrossRef]
  23. A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
    [CrossRef]
  24. A. Lakhtakia and M. W. McCall, "Circular polarization filters," in: Encyclopedia of Optical Engineering, R. G. Driggers, ed., (Marcel Dekker, New York, 2003).

2006

A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).

2005

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

2004

M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004).
[CrossRef]

2003

A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
[CrossRef]

Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
[CrossRef]

2002

J. A. Sherwin, A. Lakhtakia, and I. Hodgkinson, "On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements," Opt. Commun. 209, 369-375 (2002).
[CrossRef]

H. Selhofer, E. Ritter, and R. Linsbod, "Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials," Appl. Opt. 41, 756-762 (2002).
[CrossRef] [PubMed]

2001

M. Suzuki, T. Ito, and Y. Taga, "Morphological stability of TiO2 thin films with isolated columns," Jpn. J. Appl. Phys.  40, L398-L400 (2001).
[CrossRef]

A. Lakhtakia, "Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions," Optik 112, 145-148 (2001).
[CrossRef]

I. Hodgkinson and Q. H. Wu, "Inorganic chiral optical materials," Adv. Mater. 13, 889-897 (2001).
[CrossRef]

2000

V. C. Venugopal and A. Lakhtakia, "Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums," Proc. R. Soc. Lond. A 456, 125-161 (2000).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
[CrossRef]

C. Ting and S. Chen, "Structure evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," J. Appl. Phys 88, 4628-4633 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000).
[CrossRef]

1996

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).

1985

R. Messier and J. E. Yehoda, "Geometry of thin film morphology," J. Appl. Phys. 58, 3739-3746 (1985).
[CrossRef]

1982

R. Messier and R. C. Ross, "Evolution of microstucture in amorphous hydrogenated silicon," J. Appl. Phys. 53, 6220-6225 (1982).
[CrossRef]

1959

N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
[CrossRef]

Brett, M. J.

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).

Chen, C.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).

Chen, S.

C. Ting and S. Chen, "Structure evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," J. Appl. Phys 88, 4628-4633 (2000).
[CrossRef]

Collins, R. W.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).

Demirel, M. C.

A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

Gao, Y.

Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
[CrossRef]

Hodgkinson, I.

J. A. Sherwin, A. Lakhtakia, and I. Hodgkinson, "On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements," Opt. Commun. 209, 369-375 (2002).
[CrossRef]

I. Hodgkinson and Q. H. Wu, "Inorganic chiral optical materials," Adv. Mater. 13, 889-897 (2001).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000).
[CrossRef]

Hodgkinson, I. J.

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
[CrossRef]

Horn, M. W.

A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004).
[CrossRef]

A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
[CrossRef]

Ito, T.

M. Suzuki, T. Ito, and Y. Taga, "Morphological stability of TiO2 thin films with isolated columns," Jpn. J. Appl. Phys.  40, L398-L400 (2001).
[CrossRef]

Knight, B.

Koumoto, K.

Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
[CrossRef]

Kowal, J.

N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004).
[CrossRef]

A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
[CrossRef]

J. A. Sherwin, A. Lakhtakia, and I. Hodgkinson, "On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements," Opt. Commun. 209, 369-375 (2002).
[CrossRef]

A. Lakhtakia, "Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions," Optik 112, 145-148 (2001).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000).
[CrossRef]

V. C. Venugopal and A. Lakhtakia, "Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums," Proc. R. Soc. Lond. A 456, 125-161 (2000).
[CrossRef]

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).

Linsbod, R.

Masuda, Y.

Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
[CrossRef]

Messier, R.

M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004).
[CrossRef]

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).

R. Messier and J. E. Yehoda, "Geometry of thin film morphology," J. Appl. Phys. 58, 3739-3746 (1985).
[CrossRef]

R. Messier and R. C. Ross, "Evolution of microstucture in amorphous hydrogenated silicon," J. Appl. Phys. 53, 6220-6225 (1982).
[CrossRef]

Peng, Z.

Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
[CrossRef]

Pickett, M. D.

M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004).
[CrossRef]

Pursel, S.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).

Pursel, S. M.

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

Ritter, E.

Robbie, K.

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000).
[CrossRef]

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).

Ross, C.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).

Ross, R. C.

R. Messier and R. C. Ross, "Evolution of microstucture in amorphous hydrogenated silicon," J. Appl. Phys. 53, 6220-6225 (1982).
[CrossRef]

Selhofer, H.

Sherwin, J. A.

J. A. Sherwin, A. Lakhtakia, and I. Hodgkinson, "On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements," Opt. Commun. 209, 369-375 (2002).
[CrossRef]

Suzuki, M.

M. Suzuki, T. Ito, and Y. Taga, "Morphological stability of TiO2 thin films with isolated columns," Jpn. J. Appl. Phys.  40, L398-L400 (2001).
[CrossRef]

Taga, Y.

M. Suzuki, T. Ito, and Y. Taga, "Morphological stability of TiO2 thin films with isolated columns," Jpn. J. Appl. Phys.  40, L398-L400 (2001).
[CrossRef]

Ting, C.

C. Ting and S. Chen, "Structure evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," J. Appl. Phys 88, 4628-4633 (2000).
[CrossRef]

Venugopal, V. C.

V. C. Venugopal and A. Lakhtakia, "Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums," Proc. R. Soc. Lond. A 456, 125-161 (2000).
[CrossRef]

Wu, Q. H.

I. Hodgkinson and Q. H. Wu, "Inorganic chiral optical materials," Adv. Mater. 13, 889-897 (2001).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
[CrossRef]

I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000).
[CrossRef]

Xu, J.

A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.

Yehoda, J. E.

R. Messier and J. E. Yehoda, "Geometry of thin film morphology," J. Appl. Phys. 58, 3739-3746 (1985).
[CrossRef]

Yonezawa, T.

Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
[CrossRef]

Young, N. O.

N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
[CrossRef]

Adv. Mater.

I. Hodgkinson and Q. H. Wu, "Inorganic chiral optical materials," Adv. Mater. 13, 889-897 (2001).
[CrossRef]

Adv. Solid State Phys.

A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.

Appl. Opt.

Appl. Surf. Sci.

C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).

Innovations Mater. Res.

A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).

J. Appl. Phys

C. Ting and S. Chen, "Structure evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," J. Appl. Phys 88, 4628-4633 (2000).
[CrossRef]

J. Appl. Phys.

R. Messier and R. C. Ross, "Evolution of microstucture in amorphous hydrogenated silicon," J. Appl. Phys. 53, 6220-6225 (1982).
[CrossRef]

R. Messier and J. E. Yehoda, "Geometry of thin film morphology," J. Appl. Phys. 58, 3739-3746 (1985).
[CrossRef]

J. Mater. Chem.

Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003).
[CrossRef]

Jpn. J. Appl. Phys

M. Suzuki, T. Ito, and Y. Taga, "Morphological stability of TiO2 thin films with isolated columns," Jpn. J. Appl. Phys.  40, L398-L400 (2001).
[CrossRef]

Nanotechnology

M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004).
[CrossRef]

Nature

N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959).
[CrossRef]

Opt. Commun.

J. A. Sherwin, A. Lakhtakia, and I. Hodgkinson, "On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements," Opt. Commun. 209, 369-375 (2002).
[CrossRef]

Opt. Eng.

Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000).
[CrossRef]

Optik

A. Lakhtakia, "Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions," Optik 112, 145-148 (2001).
[CrossRef]

A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003).
[CrossRef]

Polymer

S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005).
[CrossRef]

Proc. R. Soc. Lond. A

V. C. Venugopal and A. Lakhtakia, "Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums," Proc. R. Soc. Lond. A 456, 125-161 (2000).
[CrossRef]

Other

A. Laktakia and R. Messier, "The key to a thin film HBM: the Motohiro-Taga interface," in Proceedings of Chiral ’94: 3rd International Workshop on Chiral, Bi-Isotropic and Bi-Anisotropic Media, F. Mariotte and J.-P. Parneix, eds., Perigueux, France, pp. 125-130 (1994).

A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005).
[CrossRef]

A. C. van Popta, J. C. Sit, and M. J. Brett, "Optical properties of porous helical thin films and the effects of post-deposition annealing," in Organic Optoelectronics and Photonics, P. L. Heremans, M. Muccini, and H. Hofstraat, eds., Proc. SPIE 5464, 198-208 (2004).
[CrossRef]

I. Hodgkinson, Q. H. Wu, and K. M. McGrath, "Moisture adsorption effects in biaxial and chiral optical thin film coatings," in Engineered Nanostructural Films and Materials, A. Lakhtakia, and R. F. Messier, eds., Proc. SPIE 3790, 184-194 (1999).
[CrossRef]

A. Lakhtakia and M. W. McCall, "Circular polarization filters," in: Encyclopedia of Optical Engineering, R. G. Driggers, ed., (Marcel Dekker, New York, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

X-ray diffraction spectrum of an annealed SBD chiral STF with background removed. The Miller indices corresponding to the x-ray diffraction peaks are shown on the lower graph. These peaks indicate the anatase phase of TiO2, and would be absent in the x-ray diffraction spectrum of amorphous TiO2.

Fig 2.
Fig 2.

High-resolution cross-sectional FESEM images of the column base similar to those of samples 6–9 (a) pre-annealing image and (b) post-annealing image. The faint ~10 nm periodic characteristic is due to microscope vibration.

Fig. 3.
Fig. 3.

Measured spectrums of the transmittances TLL, TRL, TRR, and TLR of four different SBD chiral STFs pre-and post-annealing, (a) sample 2, (b) sample 3, (c) sample 10, and (d) sample 6.

Fig. 4.
Fig. 4.

FESEM images of sample 5(a) before annealing, and (b, c) after annealing; (d) is a magnified version of (c) to show columnar thinning and void expansion due to annealing. The half pitches of the helical columns are highlighted with lines in (c) and some of the voids are highlighted in (d).

Tables (3)

Tables Icon

Table 1. Summary of deposition parameters for 13 different SBD chiral STF samples.

Tables Icon

Table 2. Summary of changes in measured data due to annealing. Top value is pre-annealing, middle value is post-annealing, and bottom value is percent change.

Tables Icon

Table 3. Summary of changes in inferred/calculated data due to annealing. Top value is pre-annealing, middle value is post-annealing, and bottom value is percent change.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = S D R D ,
λ o Br = P ( ε c + ε d ) 2
( Δ λ o ) Br = P ε c ε d .

Metrics