Abstract

The operational bandwidth of hollow-core photonic bandgap fibers (PBGFs) is drastically affected by interactions between the fundamental core mode and surface modes guided at the core-cladding interface. By systematically studying realistic hollow-core PBGFs we identify a new design regime robust in eliminating the presence of surface modes. We present new fiber designs with a fundamental core mode free of anticrossings with surface modes at all wavelengths within the bandgap, allowing for a low-loss operational bandwidth of ~ 17% of the central gap wavelength.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St.J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
    [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285,1537-1539 (1999).
    [CrossRef] [PubMed]
  3. J. D. Shephard, W. N. MacPherson, R. R.J. Maier, J. D.C. Jones, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, "Single-mode mid-IR guidance in a hollow-core photonic crystal fiber," Opt. Express 13,7139-7144 (2005).
    [CrossRef] [PubMed]
  4. P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Willliams, and L. Farr, "Achieving low loss and low nonlinearity in hollow-core photonic crystal fibers," in Proc. CLEO2005 (Baltimore, 2005), paper CWA7.
  5. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
    [CrossRef]
  6. J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12,1485-1496 (2004).
    [CrossRef] [PubMed]
  7. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40,551-556 (2004).
    [CrossRef]
  8. M. J. F. Digonnet, H. K. Kim, J. Shin, S. Fan, and G. S. Kino, "Simple geometric criterion to predict the existence of surface modes in air-core photonic band-gap fibers," Opt. Express 12,1864-1872 (2004).
    [CrossRef] [PubMed]
  9. H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic band-gap fibers," Opt. Express 12,3436-3442 (2004).
    [CrossRef] [PubMed]
  10. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12,394-400 (2004).
    [CrossRef] [PubMed]
  11. G. J. Pearce, J. M. Pottage, D. M. Bird, P. J. Roberts, J. C. Knight, and P. St.J. Russell "Hollow-core PCF for guidance in the mid to far infra-red," Opt. Express 13,6937-6946 (2005).
    [CrossRef] [PubMed]
  12. R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti1, D. J. Richardson, V. Finazzi1, and T. M. Monro, "Realistic designs of silica hollow-core photonic bandgap fibers free of surface mode," in Proc. OFC2006 (Anaheim, 2006), paper OFC1.
  13. N. A Mortensen and M. D. Nielsen, "Modeling of realistic cladding structures in air-core photonic band-gap fibers," Opt. Lett. 29,349-351 (2004).
    [CrossRef] [PubMed]
  14. F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro,"The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13,9115-9124 (2005).
    [CrossRef] [PubMed]
  15. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Willliams, L. Farr, M. W. Mason A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13,236-244 (2005).
    [CrossRef] [PubMed]
  16. P. J. Roberts, D. P. Willliams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, P. St.J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13,8277-8285 (2005).
    [CrossRef] [PubMed]

2005

2004

2003

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

P. St.J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
[CrossRef] [PubMed]

1999

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285,1537-1539 (1999).
[CrossRef] [PubMed]

Allan, D. C.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12,1485-1496 (2004).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285,1537-1539 (1999).
[CrossRef] [PubMed]

Bird, D. M.

Birks, T. A.

Borrelli, N. F.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12,1485-1496 (2004).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

Broderick, N. G. R.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285,1537-1539 (1999).
[CrossRef] [PubMed]

Digonnet, M. J. F.

Fan, S.

Farr, L.

Gallagher, M. T.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

George, A. K.

Jones, J. D.C.

Kim, H. K.

Kino, G. S.

Knight, J. C.

Koch, K. W.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12,1485-1496 (2004).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

Koshiba, M.

MacPherson, W. N.

Maier, R. R.J.

Mangan, B. J.

Mohebbi, M.

Monro, T. M.

Mortensen, N. A

Mortensen, N. A.

Muller, D.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

Nielsen, M. D.

Pearce, G. J.

Poletti, F.

Pottage, J. M.

Richardson, D. J.

Roberts, P. J.

Russell, P. St.J.

Sabert, H.

Saitoh, K.

Shephard, J. D.

Shin, J.

Smith, C. M.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12,1485-1496 (2004).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

Venkataraman, N.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

Wadsworth, W. J.

West, J. A.

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12,1485-1496 (2004).
[CrossRef] [PubMed]

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

Willliams, D. P.

Zhang, P.

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

IEEE J. Quantum Electron.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40,551-556 (2004).
[CrossRef]

Opt. Express

M. J. F. Digonnet, H. K. Kim, J. Shin, S. Fan, and G. S. Kino, "Simple geometric criterion to predict the existence of surface modes in air-core photonic band-gap fibers," Opt. Express 12,1864-1872 (2004).
[CrossRef] [PubMed]

H. K. Kim, M. J. F. Digonnet, G. S. Kino, J. Shin, and S. Fan, "Simulations of the effect of the core ring on surface and air-core modes in photonic band-gap fibers," Opt. Express 12,3436-3442 (2004).
[CrossRef] [PubMed]

K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12,394-400 (2004).
[CrossRef] [PubMed]

G. J. Pearce, J. M. Pottage, D. M. Bird, P. J. Roberts, J. C. Knight, and P. St.J. Russell "Hollow-core PCF for guidance in the mid to far infra-red," Opt. Express 13,6937-6946 (2005).
[CrossRef] [PubMed]

J. D. Shephard, W. N. MacPherson, R. R.J. Maier, J. D.C. Jones, M. Mohebbi, A. K. George, P. J. Roberts, and J. C. Knight, "Single-mode mid-IR guidance in a hollow-core photonic crystal fiber," Opt. Express 13,7139-7144 (2005).
[CrossRef] [PubMed]

J. A. West, C. M. Smith, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12,1485-1496 (2004).
[CrossRef] [PubMed]

F. Poletti, N. G. R. Broderick, D. J. Richardson, and T. M. Monro,"The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers," Opt. Express 13,9115-9124 (2005).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Willliams, L. Farr, M. W. Mason A. Tomlinson, T. A. Birks, J. C. Knight, and P. St.J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13,236-244 (2005).
[CrossRef] [PubMed]

P. J. Roberts, D. P. Willliams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, P. St.J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13,8277-8285 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Muller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," Proc. SPIE 5000,161-174 (2003).
[CrossRef]

Science

P. St.J. Russell, "Photonic crystal fibers," Science 299,358-362 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St.J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285,1537-1539 (1999).
[CrossRef] [PubMed]

Other

P. J. Roberts, F. Couny, T. A. Birks, J. C. Knight, P. St.J. Russell, B. J. Mangan, H. Sabert, D. P. Willliams, and L. Farr, "Achieving low loss and low nonlinearity in hollow-core photonic crystal fibers," in Proc. CLEO2005 (Baltimore, 2005), paper CWA7.

R. Amezcua-Correa, N. G. R. Broderick, M. N. Petrovich, F. Poletti1, D. J. Richardson, V. Finazzi1, and T. M. Monro, "Realistic designs of silica hollow-core photonic bandgap fibers free of surface mode," in Proc. OFC2006 (Anaheim, 2006), paper OFC1.

Supplementary Material (1)

» Media 1: AVI (312 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Cross section of a modeled PBGF with d/ʌ = 0.95, dc /ʌ = 0.55, dp /ʌ = 0.317 and tr /(ʌ-d) = 1, (b) geometric parameters used to define the structure.

Fig. 2.
Fig. 2.

(a) and (c) SEM images of hollow-core PBGFs fabricated at our facilities with compressed and expanded cores respectively. (b) and (c) modeled structures that resemble the fibers, with parameters d/ʌ = 0.95, dc /ʌ = 0.55, dp /ʌ = 0.317, normalized ring thickness T = 1, and expansion coefficient of -6.33% for (b) and +6.33% for (d).

Fig. 3.
Fig. 3.

(a) Effective index of modes (blue for FM and red for SM). (b) Fraction of core-confined energy of the FM (blue) and factor F (black) of the FM vs. wavelength for a fiber with T = 1 and E = 0. Plots of the axial Poynting vector: (i), (ii), and (iii) are of the FM “far” from the anticrossing, at the anticrossing point and near the long wavelength bandgap edge respectively, and (iv) is for the SM.

Fig. 4.
Fig. 4.

(a) Fraction of core-confined energy and (b) factor F of the fundamental core mode vs. normalized ring thickness and vs. wavelength, for fibers with E = 0.

Fig. 5.
Fig. 5.

Dispersion curves of the fundamental mode (solid lines) and surface modes (dashed lines) for fibers with (a) T = 0.175 and 0.4, (b) T = 0.5, 0.6 and 0.7. Insets are mode profiles of the surface modes located by arrows. (c) Factor F of the FM vs. wavelength for fibers with T = 0.4, 0.5, 0.6 and 0.7

Fig. 6.
Fig. 6.

(a) Operational bandwidth normalized with respect to the central gap wavelength λc = 2.05 μm, and (b) normalized with respect to the bandgap width measured at the airline, equal to 330 nm.

Fig. 7.
Fig. 7.

(blue) Maximum of the core-confined energy and (black) minimum F factor of the fundamental core mode vs. normalized ring thickness.

Fig. 8.
Fig. 8.

(Movie 312 KB) The movie in (a) shows contour maps of the percentage of power in the core of the fundamental air-guided mode as the core is enlarged. Contour maps of fraction of power in the core of the FM for fibers with the (a) smallest and (b) largest core analyzed, E = ±6.33%.

Fig. 9.
Fig. 9.

(a) Maximum of the core-confined energy, (b) minimum Fʌ, and (c) operational bandwidth normalized with respect to the center of the bandgap λc = 2.05 μm vs. normalized core thickness for E = ±6.33%,±3.16% and 0.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E = Rc 2 ʌ ʌ d 2 1
T = t r ʌ d
F = ( ε 0 μ 0 ) 1 / 2 holeperimeters dl E 2 cross sec tion dA E × H * · Z ̂ ,

Metrics