Abstract

We present a full theoretical and experimental analysis of a novel all-optical microwave photonic filter combining a mode-locked fiber laser and a Mach-Zenhder structure in cascade to a 2×1 electro-optic modulator. The filter is free from the carrier suppression effect and thus it does not require single sideband modulation. Positive and negative coefficients are obtained inherently in the system and the tunability is achieved by controlling the optical path difference of the Mach-Zenhder structure.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005).
    [CrossRef]
  2. J. Capmany, D. Pastor, and B. Ortega, "Microwave signal processing using optics," Optical Fiber Conference (Annaheim, USA, 2005), Tutorial Paper OThB1.
  3. A. Seeds, "Microwave photonics," IEEE MTT 50, 877-887 (2002).
    [CrossRef]
  4. D. B. Hunter and R. A. Minasian, "Microwave optical filters using in-fiber Bragg grating arrays," IEEE Microw. Guided Wave Lett. 6, 103-105 (1996).
    [CrossRef]
  5. M. E. Frankel and R. D. Esman, "Fiber-optic tunable microwave transversal filter," IEEE Photonics Technnol. Lett. 7, 191-193 (1995).
    [CrossRef]
  6. A. Ortigosa-Blanch, J. Mora, J. Capmany, B. Ortega, and D. Pastor, "Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser," Opt. Lett. 31, 709-711 (2006).
    [CrossRef] [PubMed]
  7. J. Capmany, D. Pastor, B. Ortega, J. Mora, A. Martinez, L. Pierno, and M. Varasi, "Theoretical model and experimental verification of 2x1 Mach-Zehnder EOM with dispersive optical fiber link propagation," International Topical Meeting on Microwave Photonic (Seoul, Korea, 2005), 145-148.
    [CrossRef]

2006

2005

2002

A. Seeds, "Microwave photonics," IEEE MTT 50, 877-887 (2002).
[CrossRef]

1996

D. B. Hunter and R. A. Minasian, "Microwave optical filters using in-fiber Bragg grating arrays," IEEE Microw. Guided Wave Lett. 6, 103-105 (1996).
[CrossRef]

1995

M. E. Frankel and R. D. Esman, "Fiber-optic tunable microwave transversal filter," IEEE Photonics Technnol. Lett. 7, 191-193 (1995).
[CrossRef]

Capmany, J.

Esman, R. D.

M. E. Frankel and R. D. Esman, "Fiber-optic tunable microwave transversal filter," IEEE Photonics Technnol. Lett. 7, 191-193 (1995).
[CrossRef]

Frankel, M. E.

M. E. Frankel and R. D. Esman, "Fiber-optic tunable microwave transversal filter," IEEE Photonics Technnol. Lett. 7, 191-193 (1995).
[CrossRef]

Hunter, D. B.

D. B. Hunter and R. A. Minasian, "Microwave optical filters using in-fiber Bragg grating arrays," IEEE Microw. Guided Wave Lett. 6, 103-105 (1996).
[CrossRef]

Minasian, R. A.

D. B. Hunter and R. A. Minasian, "Microwave optical filters using in-fiber Bragg grating arrays," IEEE Microw. Guided Wave Lett. 6, 103-105 (1996).
[CrossRef]

Mora, J.

Ortega, B.

Ortigosa-Blanch, A.

Pastor, D.

Sales, S.

Seeds, A.

A. Seeds, "Microwave photonics," IEEE MTT 50, 877-887 (2002).
[CrossRef]

IEEE Microw. Guided Wave Lett.

D. B. Hunter and R. A. Minasian, "Microwave optical filters using in-fiber Bragg grating arrays," IEEE Microw. Guided Wave Lett. 6, 103-105 (1996).
[CrossRef]

IEEE MTT

A. Seeds, "Microwave photonics," IEEE MTT 50, 877-887 (2002).
[CrossRef]

IEEE Photonics Technnol. Lett.

M. E. Frankel and R. D. Esman, "Fiber-optic tunable microwave transversal filter," IEEE Photonics Technnol. Lett. 7, 191-193 (1995).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

J. Capmany, D. Pastor, B. Ortega, J. Mora, A. Martinez, L. Pierno, and M. Varasi, "Theoretical model and experimental verification of 2x1 Mach-Zehnder EOM with dispersive optical fiber link propagation," International Topical Meeting on Microwave Photonic (Seoul, Korea, 2005), 145-148.
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, "Microwave signal processing using optics," Optical Fiber Conference (Annaheim, USA, 2005), Tutorial Paper OThB1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the RF photonic filter.

Fig. 2.
Fig. 2.

Transfer function of (a) the original filter and (b) for a delay time in the MZ of 22.6 ps.

Fig. 3.
Fig. 3.

Frequency fo and bandwidths Δf of RF filters versus the optical delay time Δτ. Theoretical calculation (solid line) and experimental results (filled squares).

Fig. 4.
Fig. 4.

Amplitude Response of (a) the base band and the RF band-pass for fo = 4.25 GHz versus the EOM biasing voltage and (b) of the RF bands for different values of fo (circles) and conventional CSE (dashed line). Inset: Detail of the transfer function of the RF filters around the first notch of CSE.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = e j ω o t · n E n · e jnΔωt E ˜ ( ω ) = n E n · δ ( ω ω o nΔω )
H RF ( Ω ) = 1 2 ( 1 2 c 2 ) · H 1 ( Ω ) · H o ( Ω ) 1 2 ( c 1 c 2 ) · E ˜ ( ω ) 2 H 2 ( Ω , ω ) e j β 2 L F ( ω ω o ) Ω ·
H o ( ω ) = E ˜ ( ω ) 2 e j β 2 L F ( ω ω o ) Ω ·
H 1 ( Ω ) = cos ( Δα ) cos ( β 2 L F Ω 2 2 )
H 2 ( Ω , ω ) = ( ( 1 + sin ( Δ α ) ) cos ( β 2 L F Ω 2 2 ΔΦ ) ( 1 sin ( Δ α ) ) cos ( β 2 L F Ω 2 2 + ΔΦ ) )
H RF ( Ω ) = 1 2 cos ( Δα ) · cos ( β 2 L F Ω 2 2 ) · H o ( Ω )
H RF ( Ω ) = ( c 1 c 2 ) E ˜ ( ω ) 2 · cos ( β 2 L F Ω 2 2 ΔΦ ) · e j β 2 L F ( ω ω o ) Ω
H RF ( Ω ) = ( c 1 c 2 ) [ e j β 2 L F Ω 2 2 e j θ 0 H o ( Ω Ω o ) + e j β 2 L F Ω 2 2 e j θ 0 H o ( Ω Ω o ) ]
Ω o = 2 π· f o = ΔW · Δτ· FSR 0 = Δτ β 2 L F

Metrics