Abstract

We propose a novel all-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation to compensate for the frequency shift. We experimentally demonstrate the proposed all-optical tunable delay line and achieve a continuous temporal shift up to 19.2 ps for 0.5 ps pulse, corresponding to a delay-to-pulse-width ratio of 38.4.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of all-optical tunable delay line based on distortion-less slow and fast light using soliton collision in optical fiber

Takashi Kunihiro, Atsushi Maeda, Shoichiro Oda, and Akihiro Maruta
Opt. Express 14(24) 11736-11747 (2006)

The analysis of all-optical logic gates based with tunable femtosecond soliton self-frequency shift

Ming Xu, Yan Li, Tiansheng Zhang, Jun Luo, Jianhua Ji, and Shuwen Yang
Opt. Express 22(7) 8349-8366 (2014)

Ultrafast all-optical signal regenerator using pulse trapping in birefringent fibers

Eiji Shiraki, Norihiko Nishizawa, and Kazuyoshi Itoh
J. Opt. Soc. Am. B 28(11) 2643-2649 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” IEEE/OSA J. Lightwave Technol. 18, 1834–1844 (2000).
    [Crossref]
  2. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Tech-nol. Lett. 4, 69–71 (1992).
    [Crossref]
  3. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proceedings of the European Conference on Optical Communication (ECOC) (IEEE, 1998) pp. 475–476.
  4. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [Crossref] [PubMed]
  5. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [Crossref] [PubMed]
  6. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [Crossref] [PubMed]
  7. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express 13, 7872–7877 (2005).
    [Crossref] [PubMed]
  8. J. van Howe and C. Xu, “Ultrafast optical delay line using soliton propagation between a time-prism pair,” Opt. Express 13, 1138–1143 (2005).
    [Crossref] [PubMed]
  9. A. Hasegawa and Y. Kodama, “Solitons in optical communications,” in Chapter 5 (Oxford University Press, Oxford, 1995).
  10. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [Crossref] [PubMed]
  11. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref] [PubMed]
  12. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
  13. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394 (1988).
    [Crossref] [PubMed]
  14. K. J. Blow, N. J. Doran, B. K. Nayar, and B. P. Nelson, “Two-wavelength operation of the nonlinear optical loop mirror,” Opt. Lett. 15, 248–250 (1990).
    [Crossref] [PubMed]

2005 (5)

2000 (1)

K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” IEEE/OSA J. Lightwave Technol. 18, 1834–1844 (2000).
[Crossref]

1992 (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Tech-nol. Lett. 4, 69–71 (1992).
[Crossref]

1990 (1)

1988 (1)

1986 (2)

1972 (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Bekki, N.

Blow, K. J.

Dahan, D.

Doran, N. J.

Eisenstein, G.

Gaeta, A. L.

Gordon, J. P.

Hasegawa, A.

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392–394 (1988).
[Crossref] [PubMed]

A. Hasegawa and Y. Kodama, “Solitons in optical communications,” in Chapter 5 (Oxford University Press, Oxford, 1995).

Herraez, M. G.

Howe, J. van

Inoue, K.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Tech-nol. Lett. 4, 69–71 (1992).
[Crossref]

Kitayama, K.

K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” IEEE/OSA J. Lightwave Technol. 18, 1834–1844 (2000).
[Crossref]

Kodama, Y.

A. Hasegawa and Y. Kodama, “Solitons in optical communications,” in Chapter 5 (Oxford University Press, Oxford, 1995).

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proceedings of the European Conference on Optical Communication (ECOC) (IEEE, 1998) pp. 475–476.

Mitschke, F. M.

Mollenauer, L. F.

Nayar, B. K.

Nelson, B. P.

Okawachi, Y.

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Sharping, J. E.

Song, K. Y.

Sotobayashi, H.

K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” IEEE/OSA J. Lightwave Technol. 18, 1834–1844 (2000).
[Crossref]

Tai, K.

Thevenaz, L.

Toba, H.

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Tech-nol. Lett. 4, 69–71 (1992).
[Crossref]

Wada, N.

K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” IEEE/OSA J. Lightwave Technol. 18, 1834–1844 (2000).
[Crossref]

Wang, Y.

Willner, A. E.

Xu, C.

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

IEEE Photon. Tech-nol. Lett. (1)

K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Tech-nol. Lett. 4, 69–71 (1992).
[Crossref]

IEEE/OSA J. Lightwave Technol. (1)

K. Kitayama, N. Wada, and H. Sotobayashi, “Architectural considerations for photonic IP router based upon optical code correlation,” IEEE/OSA J. Lightwave Technol. 18, 1834–1844 (2000).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Sov. Phys. JETP (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).

Other (2)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in Proceedings of the European Conference on Optical Communication (ECOC) (IEEE, 1998) pp. 475–476.

A. Hasegawa and Y. Kodama, “Solitons in optical communications,” in Chapter 5 (Oxford University Press, Oxford, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed all-optical TDL.

Fig. 2.
Fig. 2.

Experimental setup for all-optical TDL.

Fig. 3.
Fig. 3.

Experimentally observed spectra at the output of HNLF1 and 2.

Fig. 4.
Fig. 4.

Central wavelength versus input peak power.

Fig. 5.
Fig. 5.

Experimentally observed waveforms and spectra at the output of OBPF.

Fig. 6.
Fig. 6.

Experimentally measured temporal shift versus input peak power.

Fig. 7.
Fig. 7.

Experimentally measured pulse width and average power at the output of OBPF.

Tables (1)

Tables Icon

Table 1. Parameters of HNLFs @1550 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i E z β 2 2 2 E t 2 + γ E 2 E = i g E + i β 3 6 3 E t 3 + γ T R E E 2 t .
q = E [ mW ] P 0 [ mW ] , T = 1.763 t [ ps ] t s [ ps ] , Z = z [ km ] z d [ km ] ,
i q Z + 1 2 2 q T 2 + q 2 q = τ R q q 2 T ,
{ P 0 = 262.5 ( λ [ μ m ] ) 3 D [ ps nm km ] n 2 A eff [ × 10 9 W ] ( t s [ ps ] ) 2 , z d = 0.6062 ( t s [ ps ] ) 2 ( λ [ μ m ] ) 2 D [ ps nm km ] , τ R = 1.763 T R [ ps ] t s [ ps ] .
q ( Z , T ) = η ( Z ) sech [ η ( Z ) { T T 0 ( Z ) } ] exp { i κ ( Z ) T + i θ ( Z ) } ,
d η d Z = 0 , d κ d Z = 8 15 τ R η 4 , d T 0 d Z = κ .
η ( Z ) = η 0 , κ ( Z ) = 8 15 τ R η 0 4 Z , T 0 ( Z ) = 4 15 τ R η 0 4 Z 2 ,
q ( Z = 0 , T ) = A sech ( T ) .
η = 2 A 1 , ( 0.5 A < 1.5 ) .

Metrics