Abstract

Study of dynamics of single molecules by Fluorescence Correlation Spectroscopy (FCS) requires that the rate of photon detection per molecule be high, that the background be low, and that there be a large change in fluorescent signal associated with change in a position of a molecule. FCS applied to microscopic Surface Plasmon Coupled Emission (SPCE) suggests a powerful method to meet those requirements. In this method, the observational volume is made shallow by placing a sample on a thin metal film and illuminating it with the laser beam at Surface Plasmon Resonance (SPR) angle through high numerical aperture objective. The illuminating light excites surface plasmons in the metal film that produce an evanescent wave on the aqueous side of the interface. The thickness of the detection volume is a product of evanescent wave penetration depth and distance-dependent fluorescence coupling to surface plasmons. It is further reduced by a metal quenching of excited fluorophores at a close proximity (below 10 nm) to a surface. The fluorescent light is emitted through the metal film only at an SPCE angle. Objective collects emitted light, and a confocal aperture inserted in its conjugate image plane reduces lateral dimensions of the detection volume to a fraction of a micrometer. By using diffusion of fluorescent microspheres, we show that SPCE-FCS is an efficient method to measure molecular diffusion and that on gold surface the height of the detection volume is ~35 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Rigler, and E. L. Elson, "Fluorescence Correlation Spectroscopy: Theory and Applications," (Berlin Springer, 2001).
  2. M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
    [CrossRef]
  3. L Edman, U. Mets, and R. Rigler, "Conformational transitions monitored for single molecules in solution,"Proc Natl. Acad. Sci. U S A. 93, 6710-6715 (1996).
    [CrossRef] [PubMed]
  4. N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981).
    [CrossRef] [PubMed]
  5. A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy,"Biophys J. 85, 3294-302 (2003).
    [CrossRef] [PubMed]
  6. R. L. Hansen, and J. M. Harris, "Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy," Anal. Chem. 70, 4247-4256 (1998).
    [CrossRef]
  7. T. Ruckstuhl, and S. Seeger, "Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy," Opt. Lett. 29, 569-571 (2004).
    [CrossRef] [PubMed]
  8. K. Hassler, T. Anhut, R. Rigler, M. Gosch, and T. Lasser, "High count rates with total internal reflection fluorescence correlation spectroscopy," Biophys J. 88, L01-L03 (Epub 2004).
    [CrossRef] [PubMed]
  9. P. Schwille, "TIR-FCS: staying on the surface can sometimes be better," Biophys J. 85, 2783-2784 (2003).
    [CrossRef] [PubMed]
  10. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004).
    [CrossRef]
  11. I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
    [CrossRef]
  12. Z. Gryczynski, J. Borejdo, E. Matveeva, N. Calander, R. Grygorczyk, J. Harper, and I. Gryczynski, "Minimization of detection volume by Surface Plasmon-Coupled Emission," in Ultrasensitive and Single-Molecule Detection Technologies, J. Enderlein, and Z. K. Gryczynski, eds., Proc. SPIE S1-S10 (2006).
  13. Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
    [CrossRef] [PubMed]
  14. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
    [CrossRef] [PubMed]
  15. T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
    [CrossRef] [PubMed]
  16. J. Enderlein, and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005).
    [CrossRef] [PubMed]
  17. E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
    [CrossRef] [PubMed]
  18. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004).
    [CrossRef] [PubMed]
  19. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
    [CrossRef]
  20. V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000).
    [CrossRef]
  21. D. Axelrod, "Total internal reflection fluorescence microscopy," Methods Cell Biol. 30, 245-270 (1989).
    [CrossRef] [PubMed]
  22. TFC-Calc, "Optical Coating Design Software," Software Spectra, Inc., Portland, OR 97229 (2005).
  23. T. E. Starr and N. L. Thompson, "Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion," Biophys J. 80,1575-84 (2001).
    [CrossRef] [PubMed]
  24. C. Tanford, "Physical Chemistry of Macromolecules" (John Wiley & Sons New York, 1963).
  25. D. Braun and P. Fromherz, "Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye," Biophys J. 87,1351-9 (2004).
    [CrossRef] [PubMed]
  26. Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30,17-26 (2001).
    [CrossRef] [PubMed]

2006 (3)

Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
[CrossRef] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
[CrossRef] [PubMed]

T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
[CrossRef] [PubMed]

2005 (3)

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

J. Enderlein, and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005).
[CrossRef] [PubMed]

2004 (5)

T. Ruckstuhl, and S. Seeger, "Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy," Opt. Lett. 29, 569-571 (2004).
[CrossRef] [PubMed]

D. Braun and P. Fromherz, "Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye," Biophys J. 87,1351-9 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004).
[CrossRef]

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004).
[CrossRef] [PubMed]

2003 (2)

A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy,"Biophys J. 85, 3294-302 (2003).
[CrossRef] [PubMed]

P. Schwille, "TIR-FCS: staying on the surface can sometimes be better," Biophys J. 85, 2783-2784 (2003).
[CrossRef] [PubMed]

2001 (2)

Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30,17-26 (2001).
[CrossRef] [PubMed]

T. E. Starr and N. L. Thompson, "Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion," Biophys J. 80,1575-84 (2001).
[CrossRef] [PubMed]

2000 (1)

V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000).
[CrossRef]

1998 (2)

R. L. Hansen, and J. M. Harris, "Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy," Anal. Chem. 70, 4247-4256 (1998).
[CrossRef]

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

1996 (1)

L Edman, U. Mets, and R. Rigler, "Conformational transitions monitored for single molecules in solution,"Proc Natl. Acad. Sci. U S A. 93, 6710-6715 (1996).
[CrossRef] [PubMed]

1989 (1)

D. Axelrod, "Total internal reflection fluorescence microscopy," Methods Cell Biol. 30, 245-270 (1989).
[CrossRef] [PubMed]

1981 (1)

N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981).
[CrossRef] [PubMed]

Ajtai, K.

T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
[CrossRef] [PubMed]

Auer, M. K.

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

Axelrod, D.

D. Axelrod, "Total internal reflection fluorescence microscopy," Methods Cell Biol. 30, 245-270 (1989).
[CrossRef] [PubMed]

N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981).
[CrossRef] [PubMed]

Borejdo, J.

Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
[CrossRef] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
[CrossRef] [PubMed]

Braun, D.

D. Braun and P. Fromherz, "Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye," Biophys J. 87,1351-9 (2004).
[CrossRef] [PubMed]

Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30,17-26 (2001).
[CrossRef] [PubMed]

Burghardt, T. P.

T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
[CrossRef] [PubMed]

N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981).
[CrossRef] [PubMed]

Calander, N.

Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
[CrossRef] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

Chan, W.C. W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

Charlesworth, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
[CrossRef] [PubMed]

Cush, R. C.

A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy,"Biophys J. 85, 3294-302 (2003).
[CrossRef] [PubMed]

Edman, L

L Edman, U. Mets, and R. Rigler, "Conformational transitions monitored for single molecules in solution,"Proc Natl. Acad. Sci. U S A. 93, 6710-6715 (1996).
[CrossRef] [PubMed]

Enderlein, J.

Fischer, H.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

Fromherz, P.

D. Braun and P. Fromherz, "Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye," Biophys J. 87,1351-9 (2004).
[CrossRef] [PubMed]

Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30,17-26 (2001).
[CrossRef] [PubMed]

V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000).
[CrossRef]

Goldys, E. M.

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

Grudzinski, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

Gryczynski, I.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
[CrossRef] [PubMed]

Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004).
[CrossRef]

Gryczynski, Z.

Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
[CrossRef] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004).
[CrossRef]

Guenther, R.

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

Halsetad, M. F.

T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
[CrossRef] [PubMed]

Hansen, R. L.

R. L. Hansen, and J. M. Harris, "Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy," Anal. Chem. 70, 4247-4256 (1998).
[CrossRef]

Harris, J. M.

R. L. Hansen, and J. M. Harris, "Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy," Anal. Chem. 70, 4247-4256 (1998).
[CrossRef]

Iwanaga, Y.

Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30,17-26 (2001).
[CrossRef] [PubMed]

Jiang, W.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

Kiessling, V.

V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000).
[CrossRef]

Lakowicz, J. R.

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004).
[CrossRef]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

Lieto, A. M.

A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy,"Biophys J. 85, 3294-302 (2003).
[CrossRef] [PubMed]

Malicka, J.

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004).
[CrossRef] [PubMed]

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004).
[CrossRef]

Matveeva, E.

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

Matveeva, E. G.

Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
[CrossRef] [PubMed]

Mets, U.

L Edman, U. Mets, and R. Rigler, "Conformational transitions monitored for single molecules in solution,"Proc Natl. Acad. Sci. U S A. 93, 6710-6715 (1996).
[CrossRef] [PubMed]

Meyer-Almes, F. J.

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

Moore, J.

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

Muller, B.

V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000).
[CrossRef]

Muthu, P.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
[CrossRef] [PubMed]

Pope, A. J.

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

Rigler, R.

L Edman, U. Mets, and R. Rigler, "Conformational transitions monitored for single molecules in solution,"Proc Natl. Acad. Sci. U S A. 93, 6710-6715 (1996).
[CrossRef] [PubMed]

Ruckstuhl, T.

Schwille, P.

P. Schwille, "TIR-FCS: staying on the surface can sometimes be better," Biophys J. 85, 2783-2784 (2003).
[CrossRef] [PubMed]

Seeger, S.

Starr, T. E.

T. E. Starr and N. L. Thompson, "Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion," Biophys J. 80,1575-84 (2001).
[CrossRef] [PubMed]

Stoeckli, K. A.

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

Tarara, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
[CrossRef] [PubMed]

Thompson, N. L.

A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy,"Biophys J. 85, 3294-302 (2003).
[CrossRef] [PubMed]

T. E. Starr and N. L. Thompson, "Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion," Biophys J. 80,1575-84 (2001).
[CrossRef] [PubMed]

N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981).
[CrossRef] [PubMed]

Anal. Biochem. (1)

Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006).
[CrossRef] [PubMed]

Anal. Chem. (2)

E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004).
[CrossRef] [PubMed]

R. L. Hansen, and J. M. Harris, "Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy," Anal. Chem. 70, 4247-4256 (1998).
[CrossRef]

Biophys J. (6)

N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981).
[CrossRef] [PubMed]

A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy,"Biophys J. 85, 3294-302 (2003).
[CrossRef] [PubMed]

T. E. Starr and N. L. Thompson, "Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion," Biophys J. 80,1575-84 (2001).
[CrossRef] [PubMed]

D. Braun and P. Fromherz, "Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye," Biophys J. 87,1351-9 (2004).
[CrossRef] [PubMed]

T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006).
[CrossRef] [PubMed]

P. Schwille, "TIR-FCS: staying on the surface can sometimes be better," Biophys J. 85, 2783-2784 (2003).
[CrossRef] [PubMed]

Biophys. J. (1)

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006).
[CrossRef] [PubMed]

Drug Discovery Today (1)

M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998).
[CrossRef]

Eur Biophys J. (1)

Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30,17-26 (2001).
[CrossRef] [PubMed]

J. Phys. Chem. (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004).
[CrossRef]

J. Phys. Chem. B. (2)

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005).
[CrossRef]

Langmuir (1)

V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000).
[CrossRef]

Methods Cell Biol. (1)

D. Axelrod, "Total internal reflection fluorescence microscopy," Methods Cell Biol. 30, 245-270 (1989).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Proc Natl. Acad. Sci. U S A. (1)

L Edman, U. Mets, and R. Rigler, "Conformational transitions monitored for single molecules in solution,"Proc Natl. Acad. Sci. U S A. 93, 6710-6715 (1996).
[CrossRef] [PubMed]

Thin Solid Films (1)

I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005).
[CrossRef]

Other (5)

Z. Gryczynski, J. Borejdo, E. Matveeva, N. Calander, R. Grygorczyk, J. Harper, and I. Gryczynski, "Minimization of detection volume by Surface Plasmon-Coupled Emission," in Ultrasensitive and Single-Molecule Detection Technologies, J. Enderlein, and Z. K. Gryczynski, eds., Proc. SPIE S1-S10 (2006).

K. Hassler, T. Anhut, R. Rigler, M. Gosch, and T. Lasser, "High count rates with total internal reflection fluorescence correlation spectroscopy," Biophys J. 88, L01-L03 (Epub 2004).
[CrossRef] [PubMed]

TFC-Calc, "Optical Coating Design Software," Software Spectra, Inc., Portland, OR 97229 (2005).

R. Rigler, and E. L. Elson, "Fluorescence Correlation Spectroscopy: Theory and Applications," (Berlin Springer, 2001).

C. Tanford, "Physical Chemistry of Macromolecules" (John Wiley & Sons New York, 1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Prismless confocal SPCE-FCS microscope. Not to scale.

Fig. 2.
Fig. 2.

The intensity fluctuations (minus background) caused by diffusion of 100 nm spheres through detection volume in SPCE experiment on gold substrate (A) and the corresponding autocorrelation function (B).

Fig. 3.
Fig. 3.

The autocorrelation functions of diffusion of 100 nm spheres in SPCE experiment on gold substrate (red) and silver (gray).

Fig. 4.
Fig. 4.

Comparison of TIRF (green) and SPCE on silver (gray) autocorrelation functions. The samples and conditions were identical for two experiments.

Fig 5.
Fig 5.

Excitation (blue) and emission (red) intensities near the surfaces. a) A schematics of a random movement of fluorophore near the surface. b) The excitation decays exponentially away from the surface. c) The emission that enters the objective is exponential in TIRF and d) biphasic in SPCE.

Fig. 6.
Fig. 6.

Left: A sum of a two exponentials approximates the emission at SPCE; Right: The detection intensity versus distance to metal approximated by bi-exponentials. Note the quenching near the surface.

Fig. 7.
Fig. 7.

Fit of theoretical FCS curves to experimental data. Single-exponential for TIRF and bi-exponential for SPCE. Note that the y-axis is linear.

Fig. 8.
Fig. 8.

Fit of theoretical FCS curves to experimental data. Single-exponential for TIRF and bi-exponential for SPCE. Note that the y-scale is log minus one.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = 1 + 1 2 N ( 1 + τ τ xy ) 1 [ ( 1 τ 2 τ z ) w ( i τ 4 τ z ) + τ πτ z ]
w ( x ) = exp ( x 2 ) erfc ( ix )
τ z = d 2 4 D
τ xy = ω xy 2 4 D
G ( t ) = 1 + 1 2 N nm d n d m d n + d m A n A m R nm ( t ) nm d n d m d n + d m A n A m
R nn ( t ) = ( 1 + Dt σ 2 ) 1 ( ( 1 2 Dt d n 2 ) erfc ( Dt d n 2 ) exp ( Dt d n 2 ) + 4 Dt πd n 2 )
R nm ( t ) = ( 1 + Dt σ 2 ) 1 ( d m d m d n erfc ( Dt d m 2 ) exp ( Dt d m 2 ) + d n d n d m erfc ( Dt d n 2 ) exp ( Dt d n 2 ) )
A 0 = 1
( zero at metal surface )
A 1 = 1
G ( t ) = 1 + 1 2 N d 0 R 00 ( t ) 4 d 0 d 1 d 0 + d 1 R 01 ( t ) + d 1 R 11 ( t ) d 0 4 d 0 d 1 d 0 + d 1 + d 1
d = 65 nm
N = 5
d 0 = 35 nm
d 1 = 35 nm
d = d 0 2 + d 1 2 = 36.4 nm ( RMS value )
N = 8.33
d 0 = 50 nm
d 1 = 15 nm
d = d 0 2 + d 1 2 = 52.2 nm ( RMS value )
N = 6.25
N = 1 2 τ 0 lim 1 G ( τ ) 1

Metrics