Abstract

Tissue-simulating phantoms are widely used for controlled studies of photon transport in turbid media. Here, we describe how polystyrene microspheres, which are often used to simulate optical scattering in such phantoms, can reduce fluorophore quantum yield via collisional quenching. We report studies on UV-visible (fluorescein-based) and NIR (IR125-based) phantoms with differing fluorophore and scatterer concentrations, as well as differing microsphere sizes. Results consistent with the Stern-Volmer relation suggest that the fluorophore intrinsic excited-state lifetime decreased due to collisional quenching from polystyrene microspheres and that the quenching efficiency was dependent on the concentration ratio of fluorophores to microspheres. Lifetime decreases ranging from 10–35% (20%) were measured for fluorescein-based (IR 125-based) phantoms. Since polystyrene microspheres are commonly used in tissue-simulating phantoms for quantitative studies of fluorescence light propagation, their quenching effects on fluorescence intensities may be difficult to separate from intensity losses attributed to optical absorption and scattering in the phantom unless fluorescence lifetime measurements are performed simultaneously.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Mould, ed. Medical Science Series (IOP Publishing Ltd, London, 1988).
  2. D. J. Dowsett, P. A. Kenny, and R. E. Johnston, The physics of Diagnostic imaging (Chapman & Hall, London, 1998).
  3. D. F. Jackson, ed. Progress in medical and environmental physics (Surrey University Press, London, 1982).
  4. J. V. Hajnal and G. M. Bydder, “Registration and subtraction of serial magnetic resonance images Part 1: Technique,” in Advanced MR imaging techniques, W. G. J. Bradley and G. M Bydder, eds. (Martin Dunitz Ltd, London, 1997), pp. 221–237.
  5. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom.” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef] [PubMed]
  6. K. Rinzema, L. H. P. Murrer, and W. M. Star, “Direct experimental verification of light transport theory in an optical phantom.” J. Opt. Soc. Am. A 15, 2078–2088 (1998).
    [CrossRef]
  7. A. Sefkow, M. Bree, and M.-A. Mycek, “A method for measuring cellular optical absorption and scattering evaluated using dilute cell suspension phantoms.” Appl. Spectrosc. 55, 1495–1501 (2001).
    [CrossRef]
  8. A. J. Durkin, S. Jaikumar, and R. Richards-Kortum, “Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples.” Appl. Spectrosc. 47, 2114–2121 (1993).
    [CrossRef]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography.” Appl. Opt. 42, 3081–3094 (2003).
    [CrossRef] [PubMed]
  10. K. Vishwanath, B. W. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.” Phys. Med. Biol. 47, 3387–3405 (2002).
    [CrossRef] [PubMed]
  11. H. Jiang, S. Ramesh, and M. Bartlett, “Combined Optical and Fluorescence Imaging for Breast Cancer Detection and Diagnosis.” Crit. Rev. Biomed. Eng. 28, 371–375 (2000).
    [PubMed]
  12. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
    [CrossRef] [PubMed]
  13. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, ”Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design.“ Opt. Lett. 28, 120–122 (2003).
    [CrossRef] [PubMed]
  14. A. Thompson and E. M. Sevick-Muraca, ”Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.“ J. Biomed. Opt. 8, 111–120 (2003).
    [CrossRef] [PubMed]
  15. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, and E. Gratton, ”Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues.“ Appl. Opt. 36, 116–124 (1997).
    [CrossRef] [PubMed]
  16. S. Flock, B. Wilson, and M. Patterson, ”Monte Carlo modeling of light propagation in highly scattering tissues-II: Comparsion with measurements in phantoms.” IEEE Transactions on Biomedical Engineering 36, 1169–1173 (1989).
    [CrossRef] [PubMed]
  17. J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms.” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  18. B. B. Das, L. Feng, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media.” Rep. Prog. Phys. 60, 227–292 (1997).
    [CrossRef]
  19. A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.” Phys. Med. Biol. 42, 1801–1819 (1997).
    [CrossRef] [PubMed]
  20. M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  21. E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46–57.
  22. R. K. Wang and Y. A. Wickramasinghe, “Fast algorithm to determine optical properties of a turbid medium from time-resolved measurements.” Appl. Opt. 37, 7342–7351 (1998).
    [CrossRef]
  23. S. A. Ramakrishna and K. D. Rao, “Estimation of light transport parameters in biological media using coherent backscattering.” Pramana, J. Phys. 54, 255–267 (2000).
    [CrossRef]
  24. M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model.” Appl. Opt. 41, 4024–4035 (2002).
    [CrossRef] [PubMed]
  25. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues.” Neoplasia 2, 89–117 (2000).
    [CrossRef] [PubMed]
  26. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-stimulating phantoms.” Phys. Med. Biol. 37, 985–993 (1992).
    [CrossRef] [PubMed]
  27. S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
    [CrossRef] [PubMed]
  28. C. L. Hutchinson, T. L. Troy, and E. M. Sevickmuraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics.” Appl. Opt. 35, 2325–2332 (1996).
    [CrossRef] [PubMed]
  29. T. Farrell, M. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry.” Appl. Opt. 37, 1958–1972 (1998).
    [CrossRef]
  30. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).
  31. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevickmuraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media.” Appl. Opt. 36, 2260–2272 (1997).
    [CrossRef] [PubMed]
  32. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues.” Appl. Opt. 33, 1963–1974 (1994).
    [CrossRef] [PubMed]
  33. L. Wang, D. Liu, N. He, S. L. Jacques, and S. L. Thomsen, “Biological laser action.” Appl. Opt. 35, 1775–1779 (1996).
    [CrossRef] [PubMed]
  34. E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, “Near-infrared imaging with fluorescent contrast agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445–527.
  35. G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
    [CrossRef] [PubMed]
  36. K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models.” Optics Express 13, 7466–7482 (2005).
    [CrossRef] [PubMed]
  37. K. Vishwanath and M.-A. Mycek, “Polystyrene microspheres in tissue-simulating phantoms can collisionally quench fluorescence.” J. Fluorescence 13, 105–108 (2003).
    [CrossRef]
  38. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  39. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
    [CrossRef] [PubMed]
  40. N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
    [CrossRef] [PubMed]
  41. J. D. Pitts and M.-A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution.” Review of Scientific Instruments 72, 3061–3072 (2001).
    [CrossRef]
  42. H. C. Van De Hulst, Light Scattering by Small Particles (Wiley and Sons, New York, 1957).
  43. W.-F. Cheong, S. Prahl, and S. Welch, “A review of the optical properties of biological tissues.” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  44. Z. S. Kolber and M. D. Barkley, “Comparison of approaches to the instrument response function in fluorescence decay measurements.” Anal. Biochem. 152, 6–21 (1986).
    [CrossRef] [PubMed]
  45. K. R. Diamond, T. J. Farrell, and M. S. Patterson, ”Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.” Phys. Med. Biol. 48, 4135–4149 (2003).
    [CrossRef]
  46. D. Stasic, T. J. Farrell, and M. S. Patterson, “The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.” Phys. Med. Biol. 48, 3459–3474 (2003).
    [CrossRef] [PubMed]

2005 (1)

K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models.” Optics Express 13, 7466–7482 (2005).
[CrossRef] [PubMed]

2003 (6)

K. Vishwanath and M.-A. Mycek, “Polystyrene microspheres in tissue-simulating phantoms can collisionally quench fluorescence.” J. Fluorescence 13, 105–108 (2003).
[CrossRef]

A. Thompson and E. M. Sevick-Muraca, ”Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.“ J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

K. R. Diamond, T. J. Farrell, and M. S. Patterson, ”Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.” Phys. Med. Biol. 48, 4135–4149 (2003).
[CrossRef]

D. Stasic, T. J. Farrell, and M. S. Patterson, “The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, ”Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design.“ Opt. Lett. 28, 120–122 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography.” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

2002 (2)

M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model.” Appl. Opt. 41, 4024–4035 (2002).
[CrossRef] [PubMed]

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

2001 (2)

J. D. Pitts and M.-A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution.” Review of Scientific Instruments 72, 3061–3072 (2001).
[CrossRef]

A. Sefkow, M. Bree, and M.-A. Mycek, “A method for measuring cellular optical absorption and scattering evaluated using dilute cell suspension phantoms.” Appl. Spectrosc. 55, 1495–1501 (2001).
[CrossRef]

2000 (4)

S. A. Ramakrishna and K. D. Rao, “Estimation of light transport parameters in biological media using coherent backscattering.” Pramana, J. Phys. 54, 255–267 (2000).
[CrossRef]

H. Jiang, S. Ramesh, and M. Bartlett, “Combined Optical and Fluorescence Imaging for Breast Cancer Detection and Diagnosis.” Crit. Rev. Biomed. Eng. 28, 371–375 (2000).
[PubMed]

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues.” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

1999 (2)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

1998 (3)

1997 (8)

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, and E. Gratton, ”Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues.“ Appl. Opt. 36, 116–124 (1997).
[CrossRef] [PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevickmuraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media.” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms.” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

B. B. Das, L. Feng, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media.” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.” Phys. Med. Biol. 42, 1801–1819 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (1)

1994 (1)

1993 (1)

1992 (2)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-stimulating phantoms.” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
[CrossRef] [PubMed]

1990 (1)

W.-F. Cheong, S. Prahl, and S. Welch, “A review of the optical properties of biological tissues.” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (2)

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. Flock, B. Wilson, and M. Patterson, ”Monte Carlo modeling of light propagation in highly scattering tissues-II: Comparsion with measurements in phantoms.” IEEE Transactions on Biomedical Engineering 36, 1169–1173 (1989).
[CrossRef] [PubMed]

1986 (1)

Z. S. Kolber and M. D. Barkley, “Comparison of approaches to the instrument response function in fluorescence decay measurements.” Anal. Biochem. 152, 6–21 (1986).
[CrossRef] [PubMed]

1957 (1)

H. C. Van De Hulst, Light Scattering by Small Particles (Wiley and Sons, New York, 1957).

Alfano, R. R.

B. B. Das, L. Feng, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media.” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Ballini, J.-P.

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Barkley, M. D.

Z. S. Kolber and M. D. Barkley, “Comparison of approaches to the instrument response function in fluorescence decay measurements.” Anal. Biochem. 152, 6–21 (1986).
[CrossRef] [PubMed]

Bartlett, M.

H. Jiang, S. Ramesh, and M. Bartlett, “Combined Optical and Fluorescence Imaging for Breast Cancer Detection and Diagnosis.” Crit. Rev. Biomed. Eng. 28, 371–375 (2000).
[PubMed]

Bigio, I.

Bigio, I. J.

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).

Boas, D. A.

Bouman, C. A.

Boyer, J.

Braichotte, D.

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Bree, M.

Bydder, G. M.

J. V. Hajnal and G. M. Bydder, “Registration and subtraction of serial magnetic resonance images Part 1: Technique,” in Advanced MR imaging techniques, W. G. J. Bradley and G. M Bydder, eds. (Martin Dunitz Ltd, London, 1997), pp. 221–237.

Cerussi, A. E.

Chance, B.

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Chen, A. U.

Cheng, S.

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Cheong, W.-F.

W.-F. Cheong, S. Prahl, and S. Welch, “A review of the optical properties of biological tissues.” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Cornell, K. K.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Das, B. B.

B. B. Das, L. Feng, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media.” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Delpy, D. T.

Diamond, K. R.

K. R. Diamond, T. J. Farrell, and M. S. Patterson, ”Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.” Phys. Med. Biol. 48, 4135–4149 (2003).
[CrossRef]

Dowsett, D. J.

D. J. Dowsett, P. A. Kenny, and R. E. Johnston, The physics of Diagnostic imaging (Chapman & Hall, London, 1998).

Durkin, A. J.

Ediger, M. N.

Essenpreis, M.

Fantini, S.

Farrell, T.

Farrell, T. J.

D. Stasic, T. J. Farrell, and M. S. Patterson, “The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

K. R. Diamond, T. J. Farrell, and M. S. Patterson, ”Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.” Phys. Med. Biol. 48, 4135–4149 (2003).
[CrossRef]

Feng, L.

B. B. Das, L. Feng, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media.” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Firbank, M.

Flock, S.

S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
[CrossRef] [PubMed]

S. Flock, B. Wilson, and M. Patterson, ”Monte Carlo modeling of light propagation in highly scattering tissues-II: Comparsion with measurements in phantoms.” IEEE Transactions on Biomedical Engineering 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Forouzan, I.

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

Franceschini, M. A.

Fuselier, T.

Ghosh, N.

Godavarty, A.

E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, “Near-infrared imaging with fluorescent contrast agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445–527.

Gratton, E.

Hajnal, J. V.

J. V. Hajnal and G. M. Bydder, “Registration and subtraction of serial magnetic resonance images Part 1: Technique,” in Advanced MR imaging techniques, W. G. J. Bradley and G. M Bydder, eds. (Martin Dunitz Ltd, London, 1997), pp. 221–237.

Hall, D. J.

He, N.

Hebden, J. C.

Hielscher, A.

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

Houston, J. P.

E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, “Near-infrared imaging with fluorescent contrast agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445–527.

Hutchinson, C.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Hutchinson, C. L.

Jack, D. A.

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).

Jacques, S. L.

L. Wang, D. Liu, N. He, S. L. Jacques, and S. L. Thomsen, “Biological laser action.” Appl. Opt. 35, 1775–1779 (1996).
[CrossRef] [PubMed]

S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
[CrossRef] [PubMed]

Jaikumar, S.

Jiang, H.

H. Jiang, S. Ramesh, and M. Bartlett, “Combined Optical and Fluorescence Imaging for Breast Cancer Detection and Diagnosis.” Crit. Rev. Biomed. Eng. 28, 371–375 (2000).
[PubMed]

Johnson, T.

Johnson, T. M.

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).

Johnston, R. E.

D. J. Dowsett, P. A. Kenny, and R. E. Johnston, The physics of Diagnostic imaging (Chapman & Hall, London, 1998).

Kenny, P. A.

D. J. Dowsett, P. A. Kenny, and R. E. Johnston, The physics of Diagnostic imaging (Chapman & Hall, London, 1998).

Kienle, A.

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.” Phys. Med. Biol. 42, 1801–1819 (1997).
[CrossRef] [PubMed]

Kolber, Z. S.

Z. S. Kolber and M. D. Barkley, “Comparison of approaches to the instrument response function in fluorescence decay measurements.” Anal. Biochem. 152, 6–21 (1986).
[CrossRef] [PubMed]

L,

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).

Liu, D.

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46–57.

Madsen, S. J.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-stimulating phantoms.” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

Maier, J. S.

Mantulin, W. W.

Matchette, L. S.

Mayer, R. H.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Millane, R. P.

Miller, H. D.

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).

Milstein, A. B.

Mourant, J. R.

J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms.” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).

Murrer, L. H. P.

Mycek, M.-A.

K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models.” Optics Express 13, 7466–7482 (2005).
[CrossRef] [PubMed]

K. Vishwanath and M.-A. Mycek, “Polystyrene microspheres in tissue-simulating phantoms can collisionally quench fluorescence.” J. Fluorescence 13, 105–108 (2003).
[CrossRef]

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

J. D. Pitts and M.-A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution.” Review of Scientific Instruments 72, 3061–3072 (2001).
[CrossRef]

A. Sefkow, M. Bree, and M.-A. Mycek, “A method for measuring cellular optical absorption and scattering evaluated using dilute cell suspension phantoms.” Appl. Spectrosc. 55, 1495–1501 (2001).
[CrossRef]

Nair, M. S.

Oh, S.

Paithankar, D. Y.

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevickmuraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media.” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46–57.

Patterson, M.

Patterson, M. S.

K. R. Diamond, T. J. Farrell, and M. S. Patterson, ”Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.” Phys. Med. Biol. 48, 4135–4149 (2003).
[CrossRef]

D. Stasic, T. J. Farrell, and M. S. Patterson, “The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevickmuraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media.” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.” Phys. Med. Biol. 42, 1801–1819 (1997).
[CrossRef] [PubMed]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues.” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-stimulating phantoms.” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

Pfefer, T. J.

Pitts, J. D.

J. D. Pitts and M.-A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution.” Review of Scientific Instruments 72, 3061–3072 (2001).
[CrossRef]

Pogue, B. W.

Pradhan, A.

Prahl, S.

W.-F. Cheong, S. Prahl, and S. Welch, “A review of the optical properties of biological tissues.” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Raju, N. S.

Ramakrishna, S. A.

S. A. Ramakrishna and K. D. Rao, “Estimation of light transport parameters in biological media using coherent backscattering.” Pramana, J. Phys. 54, 255–267 (2000).
[CrossRef]

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues.” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

Ramesh, S.

H. Jiang, S. Ramesh, and M. Bartlett, “Combined Optical and Fluorescence Imaging for Breast Cancer Detection and Diagnosis.” Crit. Rev. Biomed. Eng. 28, 371–375 (2000).
[PubMed]

Rao, K. D.

S. A. Ramakrishna and K. D. Rao, “Estimation of light transport parameters in biological media using coherent backscattering.” Pramana, J. Phys. 54, 255–267 (2000).
[CrossRef]

Reynolds, J. S.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46–57.

Richards-Kortum, R.

Rinzema, K.

Rode, M.

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

Ross, A. M.

Roy, R.

E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, “Near-infrared imaging with fluorescent contrast agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445–527.

Sefkow, A.

Sevickmuraca, E. M.

Sevick-Muraca, E. M.

A. Thompson and E. M. Sevick-Muraca, ”Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.“ J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46–57.

E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, “Near-infrared imaging with fluorescent contrast agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445–527.

Snyder, P. W.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Star, W.

S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
[CrossRef] [PubMed]

Star, W. M.

Stasic, D.

D. Stasic, T. J. Farrell, and M. S. Patterson, “The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

Thompson, A.

A. Thompson and E. M. Sevick-Muraca, ”Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.“ J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

Thompson, A. B.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, “Near-infrared imaging with fluorescent contrast agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445–527.

Thomsen, S. L.

Troy, T. L.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, and E. M. Sevickmuraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics.” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46–57.

Utke, N.

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Van De Hulst, H. C.

H. C. Van De Hulst, Light Scattering by Small Particles (Wiley and Sons, New York, 1957).

Van Den Bergh, H.

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Van Gemert, M.

S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
[CrossRef] [PubMed]

Vishnoi, G.

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

Vishwanath, K.

K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models.” Optics Express 13, 7466–7482 (2005).
[CrossRef] [PubMed]

K. Vishwanath and M.-A. Mycek, “Polystyrene microspheres in tissue-simulating phantoms can collisionally quench fluorescence.” J. Fluorescence 13, 105–108 (2003).
[CrossRef]

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

Wagnieres, G.

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Wang, L.

Wang, R. K.

Waters, D. J.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

Webb, K. J.

Welch, S.

W.-F. Cheong, S. Prahl, and S. Welch, “A review of the optical properties of biological tissues.” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Wickramasinghe, Y. A.

Wilson, B.

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. Flock, B. Wilson, and M. Patterson, ”Monte Carlo modeling of light propagation in highly scattering tissues-II: Comparsion with measurements in phantoms.” IEEE Transactions on Biomedical Engineering 36, 1169–1173 (1989).
[CrossRef] [PubMed]

Wilson, B. C.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-stimulating phantoms.” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
[CrossRef] [PubMed]

Zellweger, M.

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

Zhang, Q.

Anal. Biochem. (1)

Z. S. Kolber and M. D. Barkley, “Comparison of approaches to the instrument response function in fluorescence decay measurements.” Anal. Biochem. 152, 6–21 (1986).
[CrossRef] [PubMed]

Appl. Opt. (12)

J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom.” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography.” Appl. Opt. 42, 3081–3094 (2003).
[CrossRef] [PubMed]

A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, and E. Gratton, ”Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues.“ Appl. Opt. 36, 116–124 (1997).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms.” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

M. Patterson, B. Chance, and B. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties.” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

R. K. Wang and Y. A. Wickramasinghe, “Fast algorithm to determine optical properties of a turbid medium from time-resolved measurements.” Appl. Opt. 37, 7342–7351 (1998).
[CrossRef]

M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model.” Appl. Opt. 41, 4024–4035 (2002).
[CrossRef] [PubMed]

C. L. Hutchinson, T. L. Troy, and E. M. Sevickmuraca, “Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics.” Appl. Opt. 35, 2325–2332 (1996).
[CrossRef] [PubMed]

T. Farrell, M. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry.” Appl. Opt. 37, 1958–1972 (1998).
[CrossRef]

D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevickmuraca, “Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media.” Appl. Opt. 36, 2260–2272 (1997).
[CrossRef] [PubMed]

M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues.” Appl. Opt. 33, 1963–1974 (1994).
[CrossRef] [PubMed]

L. Wang, D. Liu, N. He, S. L. Jacques, and S. L. Thomsen, “Biological laser action.” Appl. Opt. 35, 1775–1779 (1996).
[CrossRef] [PubMed]

Appl. Phys. (1)

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties.” Appl. Phys. 36, 5655–5661 (1997).

Appl. Spectrosc. (2)

Crit. Rev. Biomed. Eng. (1)

H. Jiang, S. Ramesh, and M. Bartlett, “Combined Optical and Fluorescence Imaging for Breast Cancer Detection and Diagnosis.” Crit. Rev. Biomed. Eng. 28, 371–375 (2000).
[PubMed]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. Prahl, and S. Welch, “A review of the optical properties of biological tissues.” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

IEEE Transactions on Biomedical Engineering (1)

S. Flock, B. Wilson, and M. Patterson, ”Monte Carlo modeling of light propagation in highly scattering tissues-II: Comparsion with measurements in phantoms.” IEEE Transactions on Biomedical Engineering 36, 1169–1173 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

A. Thompson and E. M. Sevick-Muraca, ”Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.“ J. Biomed. Opt. 8, 111–120 (2003).
[CrossRef] [PubMed]

N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, “Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies.” J. Biomed. Opt. 5, 173–184 (2000).
[CrossRef] [PubMed]

J. Fluorescence (1)

K. Vishwanath and M.-A. Mycek, “Polystyrene microspheres in tissue-simulating phantoms can collisionally quench fluorescence.” J. Fluorescence 13, 105–108 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Lasers in Surgery and Medicine (1)

S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, “Optical properties of Intralipid: A phantom medium for light propagation studies.” Lasers in Surgery and Medicine 12, 510–519 (1992).
[CrossRef] [PubMed]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues.” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

Optics Express (1)

K. Vishwanath and M.-A. Mycek, “Time-resolved photon migration in bi-layered tissue models.” Optics Express 13, 7466–7482 (2005).
[CrossRef] [PubMed]

Photochem. Photobiol. (2)

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents.” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. Hutchinson, and L, ”Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques.“ Photochem. Photobiol. 66, 55–64 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol. (6)

K. Vishwanath, B. W. Pogue, and M.-A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods.” Phys. Med. Biol. 47, 3387–3405 (2002).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-stimulating phantoms.” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

A. Kienle and M. S. Patterson, “Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.” Phys. Med. Biol. 42, 1801–1819 (1997).
[CrossRef] [PubMed]

G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy.” Phys. Med. Biol. 42, 1415–1426 (1997).
[CrossRef] [PubMed]

K. R. Diamond, T. J. Farrell, and M. S. Patterson, ”Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.” Phys. Med. Biol. 48, 4135–4149 (2003).
[CrossRef]

D. Stasic, T. J. Farrell, and M. S. Patterson, “The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions.” Phys. Med. Biol. 48, 3459–3474 (2003).
[CrossRef] [PubMed]

Pramana, J. Phys. (1)

S. A. Ramakrishna and K. D. Rao, “Estimation of light transport parameters in biological media using coherent backscattering.” Pramana, J. Phys. 54, 255–267 (2000).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, L. Feng, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media.” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Review of Scientific Instruments (1)

J. D. Pitts and M.-A. Mycek, “Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution.” Review of Scientific Instruments 72, 3061–3072 (2001).
[CrossRef]

Other (8)

H. C. Van De Hulst, Light Scattering by Small Particles (Wiley and Sons, New York, 1957).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).

E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, “Fluorescence lifetime spectroscopic imaging with measurements of photon migration,” in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46–57.

E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, “Near-infrared imaging with fluorescent contrast agents,” in Handbook of Biomedical Fluorescence, M.-A. Mycek and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445–527.

R. F. Mould, ed. Medical Science Series (IOP Publishing Ltd, London, 1988).

D. J. Dowsett, P. A. Kenny, and R. E. Johnston, The physics of Diagnostic imaging (Chapman & Hall, London, 1998).

D. F. Jackson, ed. Progress in medical and environmental physics (Surrey University Press, London, 1982).

J. V. Hajnal and G. M. Bydder, “Registration and subtraction of serial magnetic resonance images Part 1: Technique,” in Advanced MR imaging techniques, W. G. J. Bradley and G. M Bydder, eds. (Martin Dunitz Ltd, London, 1997), pp. 221–237.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the nanosecond UV fluorescence lifetime spectrometer (UV-FLS) instrumentation used for studies at 337.1 nm excitation. ICCD- Intensified Charge Coupled Device; APD- Avalanche Photodiode; DC- Dichroic Mirror; L - Lens; BS- Beam Splitter; BP- Band Pass Filter.

Fig. 2.
Fig. 2.

Schematic of the picosecond NIR fluorescence lifetime spectrometer (NIR-FLS) instrumentation used for studies at 777 nm. APD- Avalanche Photodiode; M- Mirror; L - Lens; BS- Beam Splitter; ND- Neutral Density Filter; BP- Band Pass Filter. The inset shows the alignment of the source and detector optical fibers used for excitation and collection of fluorescent light from the sample tissue phantom.

Fig. 3.
Fig. 3.

(a) Measured variation in fluorophore lifetime τ (relative to the intrinsic lifetime τ0) at fixed fluorescein concentration of 8 μM plotted vs. varying volume fractions of polystyrene microspheres, for three different sizes of the microspheres. (b) Same data as in (a), but now plotted vs. σ, the available surface area presented by the microspheres per unit ml of phantom media.

Fig. 4.
Fig. 4.

Measured variation in fluorophore lifetime τ (relative to the intrinsic lifetime τ0) plotted vs. σ, the available surface area presented by the polystyrene microspheres per unit ml of phantom media, for two phantom series at different fluorophore concentrations: series A (40 μM fluorescein, triangles) and series D (8 μM fluorescein, circles). Both phantom series contained 2.0 μm diameter microspheres. For the highest microsphere concentration, phantom series A showed a 20% decrease in measured lifetime, while series D showed up to a 30% decrease for the same microsphere concentration.

Fig. 5.
Fig. 5.

Measured variation in fluorophore lifetime τ (relative to the intrinsic lifetime τ0) plotted vs. σ, the available surface area presented by the polystyrene microspheres per unit ml of phantom media, for two phantom series at different fluorophore concentrations: series H (10 μM IR-125, triangles) and series G (1 μM IR-125, circles). Both phantom series contained 2.0 μm diameter microspheres. These data for IR-125 reveal the same quenching behavior vs. fluorophore concentration as data in Fig. 4 for fluorescein.

Tables (2)

Tables Icon

Table 1. Phantom composition

Tables Icon

Table 2. Summary of Stern-Volmer quenching constants for phantom series measured

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I o I = τ o τ = 1 + K D [ Q ]

Metrics