Abstract

We present a new accommodative intraocular lens based on a two-element varifocal Alvarez lens. The intraocular lens consists of (1) an anterior element combining a spherical lens for refractive power with a cubic surface for the varifocal effect, and (2) a posterior element with a cubic surface only. The focal length of the IOL lens changes when the superimposed refractive elements shift in opposite directions in a plane perpendicular to the optical axis. The ciliary muscle will drive the accommodation by a natural process of contraction and relaxation. Results of ray-tracing simulations of the model eye with the two-element intraocular lens are presented for on-axis and off-axis vision. The configuration of the lens is optimized to reduce refractive errors as well as effects of misalignment. A prototype with a clear aperture of ~5.7 mm is manufactured and evaluated in air with a Shack-Hartmann wave-front sensor. It provides an accommodation range of ~4 dioptres in the eye at a ~0.75-mm lateral displacement of the optical elements. The experimentally measured on-axis optical performance of the IOL lens agrees with the theoretically predicted performance.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.F. Koretz, P.L. Kaufman, M.W. Neider, and P.A. Goeckner, “Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques,” Appl. Opt. 28, 1097–1102 (1989).
    [Crossref] [PubMed]
  2. J.F. Koretz and G.H. Handelman, “Modeling age-related accommodation loss in the human eye,” Mathem. modeling 7, 1003–1014 (1986).
    [Crossref]
  3. S. Masket, “Accommodating IOLs: emerging concepts and design,” Cataract and Refract. Surg. Today, 32–36 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_F1_Masket.pdf.
  4. W. Freeman, “The Worldwide IOL Market. MarketScope multiclient study,” (MarketScope Inc, Manchester, MO 63021, 2005), p. 246, http://www.market-scope.com.
  5. A. Rana, D. Miller, and P. Magnante, “Understanding the accommodating intraocular lens,” J. Cataract. Refract. Surg. 29, 2284–2287 (2003).
    [Crossref]
  6. S.D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2005).
    [Crossref]
  7. H. von Helmholtz, Physiological optics, vol. 1. (Dover, New York, 1962).
  8. D. Miller, “Accommodation in nature and principles for an accommodating intraocular lens,” Ann. Ophthalmol. 17, 540–541 (1985).
    [PubMed]
  9. R.F. Fisher “The ciliary body in accommodation,” Trans. Ophthalmol. Soc. U. K. 105, 208–219 (1986).
    [PubMed]
  10. W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
    [Crossref] [PubMed]
  11. J.E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract. Refract. Surg. 29, 1878–1888 (2003).
    [Crossref] [PubMed]
  12. H. Lesiewska-Junk and J. Kaluzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract. Refract. Surg. 26, 562–565 (2000).
    [Crossref] [PubMed]
  13. T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).
  14. H.B. Dick, “Accommodative intraocular lenses: current status,” Curr. Opin. Ophthalmol. 16, 8–26, (2005).
    [Crossref] [PubMed]
  15. R. Bellucci and P. Giardini, “Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects,” J. Cataract. Refract. Surg. 19, 32–35 (1993).
    [PubMed]
  16. P.J. Gray and M.G. Lyall, “Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents,” Br. J. Ophthalmol. 76, 336–337 (1992).
    [Crossref] [PubMed]
  17. S.P.B. Percival and S.S. Setty, “Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens,” J. Cataract. Refract. Surg. 19, 26–31 (1993).
    [PubMed]
  18. D.J. Coleman, “On the hydraulic suspension theory of accommodation,” Trans. Am. Ophthalmol. Soc. 84, 846–868 (1986).
    [PubMed]
  19. J.S. Cumming, “Accommodating intraocular lens,” U.S. patent 6,200,342 (March 13, 2001).
  20. M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
    [PubMed]
  21. O. Stachs, H. Schneider, R. Beck, and R. Guthoff, “Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL,” J. Refract. Surg. 22, 145–150 (2006).
    [PubMed]
  22. O. Stachs, H. Schneider, J. Stave, and R. Guthoff, “Potentially accommodating intraocular lenses-an in vitro and in vivo study using three-dimensional high-frequency ultrasound,” J. Refract. Surg. 21, 37–45 (2005).
    [PubMed]
  23. T. Neuhann, “Four year European data on the Crystalens,” Cataract and Refract. Surg. Today, 58 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_f6_neuhann.pdf.
  24. J.S. Cumming, S.G. Slade, and A. Chayet, “Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: results of feasibility and the initial phase of Food and Drug administration clinical trials,” Ophthalmol. 108, 2005–2010 (2001).
    [Crossref]
  25. M. Packer, “The AT-45 Crystalens Accommodating Intraocular Lens,” in: C.Y. Khoo, ed., Javal Lectureship - Fresh ideas about corneal shape and structure, presented at XXIX International Congress of Ophthalmology, Sydney, Australia, 21–25 April 2002.
  26. O. Nishi, Y. Nakai, Y. Yamada, and Y. Mizumoto, “Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons,” Arch. Ophthalmol. 111, 1677–1684 (1993).
    [Crossref] [PubMed]
  27. T. Terwee, “Wiederherstellung der Akkomodationsfähigkeit durch Injektion künstlicher Linsenmateralien in den Kapselsack [Restoration of the accommodative function by injection of artificial lens material in the capsular bag],”presented at 20 Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation und refraktive Chirurgie, Heidelberg, Germany, 3-4 March 2006.
  28. G.-Y. Yoon and D.R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
    [Crossref]
  29. EN/ISO 11979-2: Ophthalmic implants - Intraocular lenses- Part 2: Optical properties and test methods, Geneva, International Organization for Standardization, 1999.
  30. M.C. Rombach, “Two optical elements which, in combination, form a lens of variable optical power for application as an intraocular lens”, Patent 1,025,622 (WO2005084587, October 7, 2005).
  31. A.N. Simonov, M. Rombach, G. Vdovin, and M. Loktev, “Varifocal optics for a novel accommodative intraocular lens,” in MEMS/MOEMS components and their applications III, S.S. Oliver, S.A. Tadigadapa, and A.K. Henning, eds., Proc. SPIE 6113, 74–80 (2006).
  32. L.W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (February 21, 1967).
  33. Akkolens International B.V., Overaseweg 9, 4836 BA Breda, The Netherlands, http://www.akkolens.com.
  34. R.E. Hopkins, “Visual optics” in Optical DesignMIL-HDBK-141, (Standardization Division, U.S. Defense Supply Agency, Washington, D.C., 1962), pp. 4.1–4.19.
  35. H.-L. Liou and N.A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
    [Crossref]
  36. O. Pomerantzeff, H. Fish, J. Govignon, and C.L. Schepens, “Wide angle optical model of the human eye”, Ann Ophthalmol. 3, 815–819 (1971).
    [PubMed]
  37. O. Pomerantzeff, P. Dufault, and R. Goldstein, “Wide-angle optical model of the eye,” in Advances in Diagnostic Visual Optics, G.M. Breinin and I.M. Siegel, eds. (Springer-Verlag, Berlin, 1983).
  38. R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [Crossref] [PubMed]
  39. D. Malacara and M. Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).
  40. Y. Le Grand and S.G El Hage, Physiological optics (Springer-Verlag, Berlin, 1980).
  41. A.C. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. 73, 1544–1550 (1983).
    [Crossref] [PubMed]
  42. L.N. Thibos, “Formation and sampling of the retinal image,” in Seeing: Handbook of perception and cognition, K.K. DeValois, ed. (Academic Press, London, 2000), pp. 1–56.
  43. O. Pomerantzeff, M. Pankratov, G.J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
    [Crossref] [PubMed]
  44. L.N. Thibos and A. Bradley, “Modeling the refractive and neuro-sensor system of the eye,” in Visual instrumentation: Optical design and engineering principles, P. Mouroulis, ed. (Mcgraw-Hill, Inc., New York, 1999), pp.101–159.
  45. A.G. Bennett and R.B. Rabbetts, “Clinical visual optics,” 2nd ed., (Butterworth-Heinemann, Oxford, 1989).
  46. L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for Reporting the Optical Aberrations of Eyes,” OSA Trends in Optics and Photonics35, Vision Science and its Applications, V. Lakshminarayanan, ed., (Optical Society of America, Washington, DC, 2000), pp. 232–244.
  47. J.M. Enoch and V. Lakshminarayanan, “Retinal fiber optics,” in Vision optics and instrumentation, W.N. Charman, ed., (MacMillan press, London, U.K., 1991), pp. 280–308.
  48. P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytic expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
    [Crossref]
  49. R. Navarro, P. Artal, and D.R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
    [Crossref] [PubMed]
  50. Oko Technologies/Flexible Optical, Röntgenweg 1, 2624 BD Delft, The Netherlands, http://www.okotech.com
  51. R. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  52. S. Barbero, S. Marcos, and I. Jimenez-Alfaro, “Optical aberrations of intraocular lenses measured in vivo and in vitro,” J. Opt. Soc. Am. A 20, 1841–1851 (2003).
    [Crossref]

2006 (2)

O. Stachs, H. Schneider, R. Beck, and R. Guthoff, “Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL,” J. Refract. Surg. 22, 145–150 (2006).
[PubMed]

A.N. Simonov, M. Rombach, G. Vdovin, and M. Loktev, “Varifocal optics for a novel accommodative intraocular lens,” in MEMS/MOEMS components and their applications III, S.S. Oliver, S.A. Tadigadapa, and A.K. Henning, eds., Proc. SPIE 6113, 74–80 (2006).

2005 (3)

O. Stachs, H. Schneider, J. Stave, and R. Guthoff, “Potentially accommodating intraocular lenses-an in vitro and in vivo study using three-dimensional high-frequency ultrasound,” J. Refract. Surg. 21, 37–45 (2005).
[PubMed]

H.B. Dick, “Accommodative intraocular lenses: current status,” Curr. Opin. Ophthalmol. 16, 8–26, (2005).
[Crossref] [PubMed]

S.D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2005).
[Crossref]

2003 (3)

A. Rana, D. Miller, and P. Magnante, “Understanding the accommodating intraocular lens,” J. Cataract. Refract. Surg. 29, 2284–2287 (2003).
[Crossref]

J.E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract. Refract. Surg. 29, 1878–1888 (2003).
[Crossref] [PubMed]

S. Barbero, S. Marcos, and I. Jimenez-Alfaro, “Optical aberrations of intraocular lenses measured in vivo and in vitro,” J. Opt. Soc. Am. A 20, 1841–1851 (2003).
[Crossref]

2002 (3)

G.-Y. Yoon and D.R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[Crossref]

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

2001 (1)

J.S. Cumming, S.G. Slade, and A. Chayet, “Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: results of feasibility and the initial phase of Food and Drug administration clinical trials,” Ophthalmol. 108, 2005–2010 (2001).
[Crossref]

2000 (1)

H. Lesiewska-Junk and J. Kaluzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract. Refract. Surg. 26, 562–565 (2000).
[Crossref] [PubMed]

1998 (1)

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

1997 (1)

1994 (1)

1993 (4)

R. Navarro, P. Artal, and D.R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201–212 (1993).
[Crossref] [PubMed]

O. Nishi, Y. Nakai, Y. Yamada, and Y. Mizumoto, “Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons,” Arch. Ophthalmol. 111, 1677–1684 (1993).
[Crossref] [PubMed]

R. Bellucci and P. Giardini, “Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects,” J. Cataract. Refract. Surg. 19, 32–35 (1993).
[PubMed]

S.P.B. Percival and S.S. Setty, “Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens,” J. Cataract. Refract. Surg. 19, 26–31 (1993).
[PubMed]

1992 (1)

P.J. Gray and M.G. Lyall, “Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents,” Br. J. Ophthalmol. 76, 336–337 (1992).
[Crossref] [PubMed]

1989 (1)

1986 (3)

D.J. Coleman, “On the hydraulic suspension theory of accommodation,” Trans. Am. Ophthalmol. Soc. 84, 846–868 (1986).
[PubMed]

R.F. Fisher “The ciliary body in accommodation,” Trans. Ophthalmol. Soc. U. K. 105, 208–219 (1986).
[PubMed]

J.F. Koretz and G.H. Handelman, “Modeling age-related accommodation loss in the human eye,” Mathem. modeling 7, 1003–1014 (1986).
[Crossref]

1985 (2)

D. Miller, “Accommodation in nature and principles for an accommodating intraocular lens,” Ann. Ophthalmol. 17, 540–541 (1985).
[PubMed]

R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[Crossref] [PubMed]

1984 (1)

O. Pomerantzeff, M. Pankratov, G.J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
[Crossref] [PubMed]

1983 (1)

1976 (1)

1971 (1)

O. Pomerantzeff, H. Fish, J. Govignon, and C.L. Schepens, “Wide angle optical model of the human eye”, Ann Ophthalmol. 3, 815–819 (1971).
[PubMed]

Alvarez, L.W.

L.W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (February 21, 1967).

Amano, Sh.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Applegate, R.A.

L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for Reporting the Optical Aberrations of Eyes,” OSA Trends in Optics and Photonics35, Vision Science and its Applications, V. Lakshminarayanan, ed., (Optical Society of America, Washington, DC, 2000), pp. 232–244.

Artal, P.

Barbero, S.

Beck, R.

O. Stachs, H. Schneider, R. Beck, and R. Guthoff, “Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL,” J. Refract. Surg. 22, 145–150 (2006).
[PubMed]

Bellucci, R.

R. Bellucci and P. Giardini, “Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects,” J. Cataract. Refract. Surg. 19, 32–35 (1993).
[PubMed]

Bennett, A.G.

A.G. Bennett and R.B. Rabbetts, “Clinical visual optics,” 2nd ed., (Butterworth-Heinemann, Oxford, 1989).

Bescos, J.

Bradley, A.

L.N. Thibos and A. Bradley, “Modeling the refractive and neuro-sensor system of the eye,” in Visual instrumentation: Optical design and engineering principles, P. Mouroulis, ed. (Mcgraw-Hill, Inc., New York, 1999), pp.101–159.

Brennan, N.A.

Chayet, A.

J.S. Cumming, S.G. Slade, and A. Chayet, “Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: results of feasibility and the initial phase of Food and Drug administration clinical trials,” Ophthalmol. 108, 2005–2010 (2001).
[Crossref]

Chen, S.

J.E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract. Refract. Surg. 29, 1878–1888 (2003).
[Crossref] [PubMed]

Coleman, D.J.

D.J. Coleman, “On the hydraulic suspension theory of accommodation,” Trans. Am. Ophthalmol. Soc. 84, 846–868 (1986).
[PubMed]

Cumming, J.S.

J.S. Cumming, S.G. Slade, and A. Chayet, “Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: results of feasibility and the initial phase of Food and Drug administration clinical trials,” Ophthalmol. 108, 2005–2010 (2001).
[Crossref]

J.S. Cumming, “Accommodating intraocular lens,” U.S. patent 6,200,342 (March 13, 2001).

Dick, H.B.

H.B. Dick, “Accommodative intraocular lenses: current status,” Curr. Opin. Ophthalmol. 16, 8–26, (2005).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Dufault, P.

O. Pomerantzeff, M. Pankratov, G.J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
[Crossref] [PubMed]

O. Pomerantzeff, P. Dufault, and R. Goldstein, “Wide-angle optical model of the eye,” in Advances in Diagnostic Visual Optics, G.M. Breinin and I.M. Siegel, eds. (Springer-Verlag, Berlin, 1983).

Enoch, J.M.

J.M. Enoch and V. Lakshminarayanan, “Retinal fiber optics,” in Vision optics and instrumentation, W.N. Charman, ed., (MacMillan press, London, U.K., 1991), pp. 280–308.

Fercher, A.F.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Findl, O.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Fish, H.

O. Pomerantzeff, H. Fish, J. Govignon, and C.L. Schepens, “Wide angle optical model of the human eye”, Ann Ophthalmol. 3, 815–819 (1971).
[PubMed]

Fisher, R.F.

R.F. Fisher “The ciliary body in accommodation,” Trans. Ophthalmol. Soc. U. K. 105, 208–219 (1986).
[PubMed]

Freeman, W.

W. Freeman, “The Worldwide IOL Market. MarketScope multiclient study,” (MarketScope Inc, Manchester, MO 63021, 2005), p. 246, http://www.market-scope.com.

Fujikado, T.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Fukuyama, M.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Giardini, P.

R. Bellucci and P. Giardini, “Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects,” J. Cataract. Refract. Surg. 19, 32–35 (1993).
[PubMed]

Glasser, A.

J.E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract. Refract. Surg. 29, 1878–1888 (2003).
[Crossref] [PubMed]

Goeckner, P.A.

Goldstein, R.

O. Pomerantzeff, P. Dufault, and R. Goldstein, “Wide-angle optical model of the eye,” in Advances in Diagnostic Visual Optics, G.M. Breinin and I.M. Siegel, eds. (Springer-Verlag, Berlin, 1983).

Govignon, J.

O. Pomerantzeff, H. Fish, J. Govignon, and C.L. Schepens, “Wide angle optical model of the human eye”, Ann Ophthalmol. 3, 815–819 (1971).
[PubMed]

Grand, Y. Le

Y. Le Grand and S.G El Hage, Physiological optics (Springer-Verlag, Berlin, 1980).

Gray, P.J.

P.J. Gray and M.G. Lyall, “Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents,” Br. J. Ophthalmol. 76, 336–337 (1992).
[Crossref] [PubMed]

Gusek-Schneider, G.C.

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

Guthoff, R.

O. Stachs, H. Schneider, R. Beck, and R. Guthoff, “Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL,” J. Refract. Surg. 22, 145–150 (2006).
[PubMed]

O. Stachs, H. Schneider, J. Stave, and R. Guthoff, “Potentially accommodating intraocular lenses-an in vitro and in vivo study using three-dimensional high-frequency ultrasound,” J. Refract. Surg. 21, 37–45 (2005).
[PubMed]

Hage, S.G El

Y. Le Grand and S.G El Hage, Physiological optics (Springer-Verlag, Berlin, 1980).

Handelman, G.H.

J.F. Koretz and G.H. Handelman, “Modeling age-related accommodation loss in the human eye,” Mathem. modeling 7, 1003–1014 (1986).
[Crossref]

Hanna, K.D.

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

Helmholtz, H. von

H. von Helmholtz, Physiological optics, vol. 1. (Dover, New York, 1962).

Hirohara, Y.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Hitzenberger, C.K.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Hopkins, R.E.

R.E. Hopkins, “Visual optics” in Optical DesignMIL-HDBK-141, (Standardization Division, U.S. Defense Supply Agency, Washington, D.C., 1962), pp. 4.1–4.19.

Hu, A.

J.E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract. Refract. Surg. 29, 1878–1888 (2003).
[Crossref] [PubMed]

Jimenez-Alfaro, I.

Kaluzny, J.

H. Lesiewska-Junk and J. Kaluzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract. Refract. Surg. 26, 562–565 (2000).
[Crossref] [PubMed]

Kaufman, P.L.

Kooijman, A.C.

Koretz, J.F.

Kuchle, M.

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

Lakshminarayanan, V.

J.M. Enoch and V. Lakshminarayanan, “Retinal fiber optics,” in Vision optics and instrumentation, W.N. Charman, ed., (MacMillan press, London, U.K., 1991), pp. 280–308.

Langenbucher, A.

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

Lesiewska-Junk, H.

H. Lesiewska-Junk and J. Kaluzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract. Refract. Surg. 26, 562–565 (2000).
[Crossref] [PubMed]

Liou, H.-L.

Loktev, M.

A.N. Simonov, M. Rombach, G. Vdovin, and M. Loktev, “Varifocal optics for a novel accommodative intraocular lens,” in MEMS/MOEMS components and their applications III, S.S. Oliver, S.A. Tadigadapa, and A.K. Henning, eds., Proc. SPIE 6113, 74–80 (2006).

Lyall, M.G.

P.J. Gray and M.G. Lyall, “Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents,” Br. J. Ophthalmol. 76, 336–337 (1992).
[Crossref] [PubMed]

Maeda, N.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Magnante, P.

A. Rana, D. Miller, and P. Magnante, “Understanding the accommodating intraocular lens,” J. Cataract. Refract. Surg. 29, 2284–2287 (2003).
[Crossref]

Malacara, D.

D. Malacara and M. Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).

Malacara, M.

D. Malacara and M. Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).

Marcos, S.

Masket, S.

S. Masket, “Accommodating IOLs: emerging concepts and design,” Cataract and Refract. Surg. Today, 32–36 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_F1_Masket.pdf.

McLeod, S.D.

S.D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2005).
[Crossref]

Menapace, R.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Mihashi, T.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Miller, D.

A. Rana, D. Miller, and P. Magnante, “Understanding the accommodating intraocular lens,” J. Cataract. Refract. Surg. 29, 2284–2287 (2003).
[Crossref]

D. Miller, “Accommodation in nature and principles for an accommodating intraocular lens,” Ann. Ophthalmol. 17, 540–541 (1985).
[PubMed]

Mimura, T.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Mizumoto, Y.

O. Nishi, Y. Nakai, Y. Yamada, and Y. Mizumoto, “Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons,” Arch. Ophthalmol. 111, 1677–1684 (1993).
[Crossref] [PubMed]

Nakai, Y.

O. Nishi, Y. Nakai, Y. Yamada, and Y. Mizumoto, “Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons,” Arch. Ophthalmol. 111, 1677–1684 (1993).
[Crossref] [PubMed]

Navarro, R.

Neider, M.W.

Neuhann, T.

T. Neuhann, “Four year European data on the Crystalens,” Cataract and Refract. Surg. Today, 58 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_f6_neuhann.pdf.

Nguyen, N.X.

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

Nishi, O.

O. Nishi, Y. Nakai, Y. Yamada, and Y. Mizumoto, “Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons,” Arch. Ophthalmol. 111, 1677–1684 (1993).
[Crossref] [PubMed]

Noll, R.

Oshika, T.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Packer, M.

M. Packer, “The AT-45 Crystalens Accommodating Intraocular Lens,” in: C.Y. Khoo, ed., Javal Lectureship - Fresh ideas about corneal shape and structure, presented at XXIX International Congress of Ophthalmology, Sydney, Australia, 21–25 April 2002.

Pankratov, M.

O. Pomerantzeff, M. Pankratov, G.J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
[Crossref] [PubMed]

Percival, S.P.B.

S.P.B. Percival and S.S. Setty, “Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens,” J. Cataract. Refract. Surg. 19, 26–31 (1993).
[PubMed]

Pomerantzeff, O.

O. Pomerantzeff, M. Pankratov, G.J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
[Crossref] [PubMed]

O. Pomerantzeff, H. Fish, J. Govignon, and C.L. Schepens, “Wide angle optical model of the human eye”, Ann Ophthalmol. 3, 815–819 (1971).
[PubMed]

O. Pomerantzeff, P. Dufault, and R. Goldstein, “Wide-angle optical model of the eye,” in Advances in Diagnostic Visual Optics, G.M. Breinin and I.M. Siegel, eds. (Springer-Verlag, Berlin, 1983).

Portney, V.

S.D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2005).
[Crossref]

Rabbetts, R.B.

A.G. Bennett and R.B. Rabbetts, “Clinical visual optics,” 2nd ed., (Butterworth-Heinemann, Oxford, 1989).

Rainer, G.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Rana, A.

A. Rana, D. Miller, and P. Magnante, “Understanding the accommodating intraocular lens,” J. Cataract. Refract. Surg. 29, 2284–2287 (2003).
[Crossref]

Rombach, M.

A.N. Simonov, M. Rombach, G. Vdovin, and M. Loktev, “Varifocal optics for a novel accommodative intraocular lens,” in MEMS/MOEMS components and their applications III, S.S. Oliver, S.A. Tadigadapa, and A.K. Henning, eds., Proc. SPIE 6113, 74–80 (2006).

Rombach, M.C.

M.C. Rombach, “Two optical elements which, in combination, form a lens of variable optical power for application as an intraocular lens”, Patent 1,025,622 (WO2005084587, October 7, 2005).

Santamaria, J.

Schepens, C.L.

O. Pomerantzeff, H. Fish, J. Govignon, and C.L. Schepens, “Wide angle optical model of the human eye”, Ann Ophthalmol. 3, 815–819 (1971).
[PubMed]

Schneider, H.

O. Stachs, H. Schneider, R. Beck, and R. Guthoff, “Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL,” J. Refract. Surg. 22, 145–150 (2006).
[PubMed]

O. Stachs, H. Schneider, J. Stave, and R. Guthoff, “Potentially accommodating intraocular lenses-an in vitro and in vivo study using three-dimensional high-frequency ultrasound,” J. Refract. Surg. 21, 37–45 (2005).
[PubMed]

Schwiegerling, J.T.

L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for Reporting the Optical Aberrations of Eyes,” OSA Trends in Optics and Photonics35, Vision Science and its Applications, V. Lakshminarayanan, ed., (Optical Society of America, Washington, DC, 2000), pp. 232–244.

Seitz, B.

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

Setty, S.S.

S.P.B. Percival and S.S. Setty, “Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens,” J. Cataract. Refract. Surg. 19, 26–31 (1993).
[PubMed]

Simonov, A.N.

A.N. Simonov, M. Rombach, G. Vdovin, and M. Loktev, “Varifocal optics for a novel accommodative intraocular lens,” in MEMS/MOEMS components and their applications III, S.S. Oliver, S.A. Tadigadapa, and A.K. Henning, eds., Proc. SPIE 6113, 74–80 (2006).

Slade, S.G.

J.S. Cumming, S.G. Slade, and A. Chayet, “Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: results of feasibility and the initial phase of Food and Drug administration clinical trials,” Ophthalmol. 108, 2005–2010 (2001).
[Crossref]

Stachs, O.

O. Stachs, H. Schneider, R. Beck, and R. Guthoff, “Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL,” J. Refract. Surg. 22, 145–150 (2006).
[PubMed]

O. Stachs, H. Schneider, J. Stave, and R. Guthoff, “Potentially accommodating intraocular lenses-an in vitro and in vivo study using three-dimensional high-frequency ultrasound,” J. Refract. Surg. 21, 37–45 (2005).
[PubMed]

Stave, J.

O. Stachs, H. Schneider, J. Stave, and R. Guthoff, “Potentially accommodating intraocular lenses-an in vitro and in vivo study using three-dimensional high-frequency ultrasound,” J. Refract. Surg. 21, 37–45 (2005).
[PubMed]

Tanaka, S.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Terwee, T.

T. Terwee, “Wiederherstellung der Akkomodationsfähigkeit durch Injektion künstlicher Linsenmateralien in den Kapselsack [Restoration of the accommodative function by injection of artificial lens material in the capsular bag],”presented at 20 Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation und refraktive Chirurgie, Heidelberg, Germany, 3-4 March 2006.

Thibos, L.N.

L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for Reporting the Optical Aberrations of Eyes,” OSA Trends in Optics and Photonics35, Vision Science and its Applications, V. Lakshminarayanan, ed., (Optical Society of America, Washington, DC, 2000), pp. 232–244.

L.N. Thibos and A. Bradley, “Modeling the refractive and neuro-sensor system of the eye,” in Visual instrumentation: Optical design and engineering principles, P. Mouroulis, ed. (Mcgraw-Hill, Inc., New York, 1999), pp.101–159.

L.N. Thibos, “Formation and sampling of the retinal image,” in Seeing: Handbook of perception and cognition, K.K. DeValois, ed. (Academic Press, London, 2000), pp. 1–56.

Ting, A.

S.D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2005).
[Crossref]

Vass, C.

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Vdovin, G.

A.N. Simonov, M. Rombach, G. Vdovin, and M. Loktev, “Varifocal optics for a novel accommodative intraocular lens,” in MEMS/MOEMS components and their applications III, S.S. Oliver, S.A. Tadigadapa, and A.K. Henning, eds., Proc. SPIE 6113, 74–80 (2006).

Wang, G.J.

O. Pomerantzeff, M. Pankratov, G.J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
[Crossref] [PubMed]

Webb, R.

L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for Reporting the Optical Aberrations of Eyes,” OSA Trends in Optics and Photonics35, Vision Science and its Applications, V. Lakshminarayanan, ed., (Optical Society of America, Washington, DC, 2000), pp. 232–244.

Williams, D.R.

Wold, J.E.

J.E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract. Refract. Surg. 29, 1878–1888 (2003).
[Crossref] [PubMed]

Yamada, Y.

O. Nishi, Y. Nakai, Y. Yamada, and Y. Mizumoto, “Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons,” Arch. Ophthalmol. 111, 1677–1684 (1993).
[Crossref] [PubMed]

Yoon, G.-Y.

Yoshitomi, F.

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

Am. J. Ophthalmol. (1)

W. Drexler, O. Findl, R. Menapace, G. Rainer, C. Vass, C.K. Hitzenberger, and A.F. Fercher, “Partial coherence interferometry: a novel approach to biometry in cataract surgery,” Am. J. Ophthalmol. 126, 524–534 (1998).
[Crossref] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

O. Pomerantzeff, M. Pankratov, G.J. Wang, and P. Dufault, “Wide-angle optical model of the eye,” Am. J. Optom. Physiol. Opt. 61, 166–176 (1984).
[Crossref] [PubMed]

Ann Ophthalmol. (1)

O. Pomerantzeff, H. Fish, J. Govignon, and C.L. Schepens, “Wide angle optical model of the human eye”, Ann Ophthalmol. 3, 815–819 (1971).
[PubMed]

Ann. Ophthalmol. (1)

D. Miller, “Accommodation in nature and principles for an accommodating intraocular lens,” Ann. Ophthalmol. 17, 540–541 (1985).
[PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

O. Nishi, Y. Nakai, Y. Yamada, and Y. Mizumoto, “Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons,” Arch. Ophthalmol. 111, 1677–1684 (1993).
[Crossref] [PubMed]

Br. J. Ophthalmol. (2)

S.D. McLeod, V. Portney, and A. Ting, “A dual optic accommodating foldable intraocular lens,” Br. J. Ophthalmol. 87, 1083–1085 (2005).
[Crossref]

P.J. Gray and M.G. Lyall, “Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents,” Br. J. Ophthalmol. 76, 336–337 (1992).
[Crossref] [PubMed]

Curr. Opin. Ophthalmol. (1)

H.B. Dick, “Accommodative intraocular lenses: current status,” Curr. Opin. Ophthalmol. 16, 8–26, (2005).
[Crossref] [PubMed]

Investig. Ophthalmol. and Vis. Science (1)

T. Oshika, T. Mimura, S. Tanaka, Sh. Amano, M. Fukuyama, F. Yoshitomi, N. Maeda, T. Fujikado, Y. Hirohara, and T. Mihashi, “Apperent accommodation and corneal wavefront aberration in pseudophakic eyes,” Investig. Ophthalmol. and Vis. Science 43, 2882–2886 (2002).

J. Cataract. Refract. Surg. (5)

A. Rana, D. Miller, and P. Magnante, “Understanding the accommodating intraocular lens,” J. Cataract. Refract. Surg. 29, 2284–2287 (2003).
[Crossref]

J.E. Wold, A. Hu, S. Chen, and A. Glasser, “Subjective and objective measurement of human accommodative amplitude,” J. Cataract. Refract. Surg. 29, 1878–1888 (2003).
[Crossref] [PubMed]

H. Lesiewska-Junk and J. Kaluzny, “Intraocular lens movement and accommodation in eyes of young patients,” J. Cataract. Refract. Surg. 26, 562–565 (2000).
[Crossref] [PubMed]

S.P.B. Percival and S.S. Setty, “Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens,” J. Cataract. Refract. Surg. 19, 26–31 (1993).
[PubMed]

R. Bellucci and P. Giardini, “Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects,” J. Cataract. Refract. Surg. 19, 32–35 (1993).
[PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (6)

J. Refract. Surg. (3)

M. Kuchle, N.X. Nguyen, A. Langenbucher, G.C. Gusek-Schneider, B. Seitz, and K.D. Hanna, “Implantation of a new accommodative posterior chamber intraocular lens,” J. Refract. Surg. 18, 208–216 (2002).
[PubMed]

O. Stachs, H. Schneider, R. Beck, and R. Guthoff, “Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL,” J. Refract. Surg. 22, 145–150 (2006).
[PubMed]

O. Stachs, H. Schneider, J. Stave, and R. Guthoff, “Potentially accommodating intraocular lenses-an in vitro and in vivo study using three-dimensional high-frequency ultrasound,” J. Refract. Surg. 21, 37–45 (2005).
[PubMed]

Mathem. modeling (1)

J.F. Koretz and G.H. Handelman, “Modeling age-related accommodation loss in the human eye,” Mathem. modeling 7, 1003–1014 (1986).
[Crossref]

Ophthalmol. (1)

J.S. Cumming, S.G. Slade, and A. Chayet, “Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: results of feasibility and the initial phase of Food and Drug administration clinical trials,” Ophthalmol. 108, 2005–2010 (2001).
[Crossref]

Proc. SPIE (1)

A.N. Simonov, M. Rombach, G. Vdovin, and M. Loktev, “Varifocal optics for a novel accommodative intraocular lens,” in MEMS/MOEMS components and their applications III, S.S. Oliver, S.A. Tadigadapa, and A.K. Henning, eds., Proc. SPIE 6113, 74–80 (2006).

Trans. Am. Ophthalmol. Soc. (1)

D.J. Coleman, “On the hydraulic suspension theory of accommodation,” Trans. Am. Ophthalmol. Soc. 84, 846–868 (1986).
[PubMed]

Trans. Ophthalmol. Soc. U. K. (1)

R.F. Fisher “The ciliary body in accommodation,” Trans. Ophthalmol. Soc. U. K. 105, 208–219 (1986).
[PubMed]

Other (21)

H. von Helmholtz, Physiological optics, vol. 1. (Dover, New York, 1962).

S. Masket, “Accommodating IOLs: emerging concepts and design,” Cataract and Refract. Surg. Today, 32–36 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_F1_Masket.pdf.

W. Freeman, “The Worldwide IOL Market. MarketScope multiclient study,” (MarketScope Inc, Manchester, MO 63021, 2005), p. 246, http://www.market-scope.com.

J.S. Cumming, “Accommodating intraocular lens,” U.S. patent 6,200,342 (March 13, 2001).

L.W. Alvarez, “Two-element variable-power spherical lens,” U.S. patent 3,305,294 (February 21, 1967).

Akkolens International B.V., Overaseweg 9, 4836 BA Breda, The Netherlands, http://www.akkolens.com.

R.E. Hopkins, “Visual optics” in Optical DesignMIL-HDBK-141, (Standardization Division, U.S. Defense Supply Agency, Washington, D.C., 1962), pp. 4.1–4.19.

EN/ISO 11979-2: Ophthalmic implants - Intraocular lenses- Part 2: Optical properties and test methods, Geneva, International Organization for Standardization, 1999.

M.C. Rombach, “Two optical elements which, in combination, form a lens of variable optical power for application as an intraocular lens”, Patent 1,025,622 (WO2005084587, October 7, 2005).

T. Terwee, “Wiederherstellung der Akkomodationsfähigkeit durch Injektion künstlicher Linsenmateralien in den Kapselsack [Restoration of the accommodative function by injection of artificial lens material in the capsular bag],”presented at 20 Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation und refraktive Chirurgie, Heidelberg, Germany, 3-4 March 2006.

M. Packer, “The AT-45 Crystalens Accommodating Intraocular Lens,” in: C.Y. Khoo, ed., Javal Lectureship - Fresh ideas about corneal shape and structure, presented at XXIX International Congress of Ophthalmology, Sydney, Australia, 21–25 April 2002.

T. Neuhann, “Four year European data on the Crystalens,” Cataract and Refract. Surg. Today, 58 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_f6_neuhann.pdf.

D. Malacara and M. Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).

Y. Le Grand and S.G El Hage, Physiological optics (Springer-Verlag, Berlin, 1980).

O. Pomerantzeff, P. Dufault, and R. Goldstein, “Wide-angle optical model of the eye,” in Advances in Diagnostic Visual Optics, G.M. Breinin and I.M. Siegel, eds. (Springer-Verlag, Berlin, 1983).

L.N. Thibos and A. Bradley, “Modeling the refractive and neuro-sensor system of the eye,” in Visual instrumentation: Optical design and engineering principles, P. Mouroulis, ed. (Mcgraw-Hill, Inc., New York, 1999), pp.101–159.

A.G. Bennett and R.B. Rabbetts, “Clinical visual optics,” 2nd ed., (Butterworth-Heinemann, Oxford, 1989).

L.N. Thibos, R.A. Applegate, J.T. Schwiegerling, and R. Webb, and VSIA Standards Taskforce Members, “Standards for Reporting the Optical Aberrations of Eyes,” OSA Trends in Optics and Photonics35, Vision Science and its Applications, V. Lakshminarayanan, ed., (Optical Society of America, Washington, DC, 2000), pp. 232–244.

J.M. Enoch and V. Lakshminarayanan, “Retinal fiber optics,” in Vision optics and instrumentation, W.N. Charman, ed., (MacMillan press, London, U.K., 1991), pp. 280–308.

Oko Technologies/Flexible Optical, Röntgenweg 1, 2624 BD Delft, The Netherlands, http://www.okotech.com

L.N. Thibos, “Formation and sampling of the retinal image,” in Seeing: Handbook of perception and cognition, K.K. DeValois, ed. (Academic Press, London, 2000), pp. 1–56.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Refraction at Alvarez surface.

Fig. 2.
Fig. 2.

Model eye with the accommodative IOL (horizontal section).

Fig. 3.
Fig. 3.

Refractive surfaces of the two-element accommodative IOL.

Fig. 4.
Fig. 4.

Comparison of (a) polychromatic MTFs and (b) ocular chromatic aberration of the model eye containing the accommodative IOL with published data.

Fig. 5.
Fig. 5.

Off-axis polychromatic MTFs of the model eye with the accommodative IOL focused at L=6 m : (a) dependence on the horizontal eccentricity (αX ) and comparison with published data for a 4-mm pupil, (b) dependence on the vertical eccentricity (αY ).

Fig. 6.
Fig. 6.

Simulation of the Snellen test imaged on the retina for the central (αX =0°) and peripheral horizontal fields (αX =±5°).

Fig. 7.
Fig. 7.

Monochromatic (λ=0.546 μm) on-axis MTFs of the model eye with the accommodative IOL optimized for the cases (a) α=5° and (b) α=0°.

Fig. 8.
Fig. 8.

Misalignments of the IOL inside the eye.

Fig. 9.
Fig. 9.

On-axis MTFs at a spatial frequency of 100 cycles/mm for the model eye with the IOL implant rotated (a) about X-axis and (b) about Y-axis.

Fig. 10.
Fig. 10.

On-axis MTFs at a spatial frequency of 100 cycles/mm for the model eye with the IOL implant translated (a) along X-axis and (b) along Y-axis.

Fig. 11.
Fig. 11.

Experimental setup for the IOL characterization. D1, D2,, diaphragms; O1, objective. Inset shows the two-element IOL.

Fig. 12.
Fig. 12.

Comparison of measured and simulated (a) defocus versus shift ∆x and (b) the corresponding change in focal power of the IOL in air.

Fig. 13.
Fig. 13.

Measured and simulated aberrations produced by the IOL.

Fig. 14.
Fig. 14.

Wave-front (without tilts and defocus) produced by the dioptric Alvarez element: (a) measured, (b) calculated.

Fig. 15.
Fig. 15.

Two-element accommodative IOL: (a) schematic representation, (b) photograph. This accommodating IOL is currently in development.

Tables (3)

Tables Icon

Table 1. Asphericity of the eye’s refractive surfaces.

Tables Icon

Table 2. Parameters of the model eye used in simulations

Tables Icon

Table 3. Dispersion coefficients used in Eq. (9) and (10)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

z = S A ( x , y ) = A ( x y 2 + x 3 3 ) ,
z = S A ( x + Δ x 0 , y ) = S A ( x , y ) + A ( x 2 + y 2 ) Δ x 0 + A x Δ x 0 2 + 1 3 A Δ x 0 3 .
z = S ( x , y ) = S A ( x , y ) + r 2 R { 1 + 1 ( 1 + k ) × ( r R ) 2 } + a 1 r 4 + a 2 r 6 + + a n r ( 2 n + 2 ) ,
t n = 0 N t ( n ) = 1 a z n = 0 N { S ( x ( n ) , y ( n ) ) z ( n ) } ,
x ( n ) = x ( n 1 ) + a x t ( n 1 ) , y ( n ) = y ( n 1 ) + a y t ( n 1 ) , z ( n ) = z ( n 1 ) + a z t ( n 1 ) ,
b i = n 1 n 2 a i + q i { a n 1 n 2 + a a 1 ( n 1 n 2 ) 2 ( 1 a 2 ) } ,
q = { S ( x , y ) z } { S ( x , y ) z } ,
q x = g 1 { A ( x 2 + y 2 ) + x ( R α ) 1 + 4 a 1 r 2 x + 6 a 2 r 4 x + + ( 2 n + 2 ) a n r 2 n x } ,
q y = g 1 { 2 A x y + y ( R α ) 1 + 4 a 1 r 2 y + 6 a 2 r 4 y + + ( 2 n + 2 ) a n r 2 n y } ,
q z = g 1 ,
n 2 = c 0 + c 1 λ 2 + c 2 λ 2 + c 3 λ 4 + c 4 λ 6 + c 5 λ 8 .
n = n 0 + g 1 λ 1 + g 2 λ 3.5 .
z = S 1 ( x , y ) = h 1 A 1 ( x y 2 + x 3 3 ) r 2 R { 1 + 1 ( r R ) 2 } + a 1 r 4 + a 2 r 6 ,
z = S 2 ( x , y ) = h 2 + A 2 ( x y 2 + x 3 3 ) ,
Φ ( r ) = i = 1 N a i Z i ( r R 0 ) ,
Δ F ( Δ x ) = F ( Δ x ) F ( Δ x = 0 ) = 4 3 a 4 λ F 0 2 / R 0 2 ,
W ( x . y ) = A 1 ( x y 2 + x 3 3 + x r 0 2 3 ) × ( n 1 ) / λ .

Metrics