Abstract

Integration of different-period distributed Bragg reflectors (DBRs) is required in constructing an intra-board optical interconnection device with wavelength division multiplexing (WDM). Interference exposure method with cylindrical Lloyd mirror optics and mask aligner was discussed for integrating those DBRs simultaneously. DBRs were designed to give coupling efficiency higher than 80 % with coupling length of 0.6 mm and crosstalk noise less than -10 dB with 3nm wavelength separation for optical interconnection using eight wavelengths around 850nm. Interference exposure system was developed and integration of eight DBRs by two times exposure was demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Savage, "Linking with light," IEEE SpectrumAugust2002, 32-36.
    [CrossRef]
  2. <jrn> A. G. Kirk, D. V. Plant, T. H. Szymanski, Z. G. Vranesic, F. A. P. Tooley, D. R. Roiston, M. H. Ayliffe, F. K. Lacroix, B. Robertson, E. Bernier, and D. F. -Brosseau, "Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications," Appl. Opt. 422465-2481 (2003).</jrn>
    [CrossRef] [PubMed]
  3. C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
    [CrossRef]
  4. S. Voigt, S. Kufner, M. Kufner, and I. Frese, "A refractive free-space microoptical 4 x 4 interconnect on chip level with optical fan-out fabricated by the LIGA technique," IEEE Photon. Technol. Lett. 14, 1484-1486 (2002).
    [CrossRef]
  5. M. Chateauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, and J. D. Ahearn, "512-channel vertical-cavity surface-emitting laser based free-space optical link," Appl. Opt. 41, 5552-5561 (2002).
    [CrossRef] [PubMed]
  6. H. Sasaki, K. Kotani, H. Wada, T. Takamori and T. Ushikubo, "Scalability analysis of diffractive optical element-based free-space photonic circuits for interoptoelectronic chip interconnections," Appl. Opt. 40, 1843-1855 (2001).
    [CrossRef]
  7. M. Gruber, "Multichip module with planar-integrated free-space optical vector-matrix-type interconnects," Appl. Opt. 43, 463-470 (2004).
    [CrossRef] [PubMed]
  8. G. Li, D. Huang, E. Yuceturk, P. J. Marchand, S. C. Esener, V. H. Ozguz and Y. Liu, "Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks," Appl. Opt. 41, 348-360 (2002).
    [CrossRef] [PubMed]
  9. S. Ura, "Selective guided mode coupling via bridging mode by integrated gratings for intraboard optical interconnects," Proc. SPIE 4652, 86-96 (2002).
    [CrossRef]
  10. K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
    [CrossRef]
  11. K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
    [CrossRef] [PubMed]
  12. J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
    [CrossRef]
  13. A. Horii, K. Shinoda, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "0.5Gbit/s signal transmission in thin-film waveguide with free-space-wave add-drop multiplexers," in Tech. Digest CD-ROM of Pacific Rim Conf. Lasers & Electro-Opt., July11-15, 2005, Tokyo, Japan, 540-541.
  14. S. Ura, M. Hamada, J. Ohmori, K. Nishio, K. Kintaka, "Free-space-wave drop demultiplexing waveguide device fabricated by use of the interference exposure method," Appl. Opt. 45,22-26 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

2004 (3)

2003 (1)

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

2002 (5)

S. Voigt, S. Kufner, M. Kufner, and I. Frese, "A refractive free-space microoptical 4 x 4 interconnect on chip level with optical fan-out fabricated by the LIGA technique," IEEE Photon. Technol. Lett. 14, 1484-1486 (2002).
[CrossRef]

S. Ura, "Selective guided mode coupling via bridging mode by integrated gratings for intraboard optical interconnects," Proc. SPIE 4652, 86-96 (2002).
[CrossRef]

N. Savage, "Linking with light," IEEE SpectrumAugust2002, 32-36.
[CrossRef]

G. Li, D. Huang, E. Yuceturk, P. J. Marchand, S. C. Esener, V. H. Ozguz and Y. Liu, "Three-dimensional optoelectronic stacked processor by use of free-space optical interconnection and three-dimensional VLSI chip stacks," Appl. Opt. 41, 348-360 (2002).
[CrossRef] [PubMed]

M. Chateauneuf, A. G. Kirk, D. V. Plant, T. Yamamoto, and J. D. Ahearn, "512-channel vertical-cavity surface-emitting laser based free-space optical link," Appl. Opt. 41, 5552-5561 (2002).
[CrossRef] [PubMed]

2001 (1)

Ahearn, J. D.

Baukens, V.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Brunfaut, M.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Campenhout, J. V.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Chateauneuf, M.

Debaes, C.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Esener, S. C.

Frese, I.

S. Voigt, S. Kufner, M. Kufner, and I. Frese, "A refractive free-space microoptical 4 x 4 interconnect on chip level with optical fan-out fabricated by the LIGA technique," IEEE Photon. Technol. Lett. 14, 1484-1486 (2002).
[CrossRef]

Gruber, M.

Hamada, M.

Hermanne, A.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Huang, D.

Imaoka, Y.

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
[CrossRef] [PubMed]

Kintaka, K.

S. Ura, M. Hamada, J. Ohmori, K. Nishio, K. Kintaka, "Free-space-wave drop demultiplexing waveguide device fabricated by use of the interference exposure method," Appl. Opt. 45,22-26 (2006).
[CrossRef] [PubMed]

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
[CrossRef] [PubMed]

Kirk, A. G.

Kotani, K.

Kufner, M.

S. Voigt, S. Kufner, M. Kufner, and I. Frese, "A refractive free-space microoptical 4 x 4 interconnect on chip level with optical fan-out fabricated by the LIGA technique," IEEE Photon. Technol. Lett. 14, 1484-1486 (2002).
[CrossRef]

Kufner, S.

S. Voigt, S. Kufner, M. Kufner, and I. Frese, "A refractive free-space microoptical 4 x 4 interconnect on chip level with optical fan-out fabricated by the LIGA technique," IEEE Photon. Technol. Lett. 14, 1484-1486 (2002).
[CrossRef]

Li, G.

Liu, Y.

Marchand, P. J.

Meeus, W.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Nishihara, H.

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
[CrossRef] [PubMed]

Nishihara, M.

Nishii, J.

K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
[CrossRef] [PubMed]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

Nishio, K.

Ohmori, J.

S. Ura, M. Hamada, J. Ohmori, K. Nishio, K. Kintaka, "Free-space-wave drop demultiplexing waveguide device fabricated by use of the interference exposure method," Appl. Opt. 45,22-26 (2006).
[CrossRef] [PubMed]

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
[CrossRef] [PubMed]

Ottevaere, H.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Ozguz, V. H.

Plant, D. V.

Sasaki, H.

Satoh, R.

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
[CrossRef] [PubMed]

Savage, N.

N. Savage, "Linking with light," IEEE SpectrumAugust2002, 32-36.
[CrossRef]

Takamori, T.

Thienpont, H.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Tuteleers, P.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Ura, S.

S. Ura, M. Hamada, J. Ohmori, K. Nishio, K. Kintaka, "Free-space-wave drop demultiplexing waveguide device fabricated by use of the interference exposure method," Appl. Opt. 45,22-26 (2006).
[CrossRef] [PubMed]

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, "Integrated waveguide gratings for wavelength demultiplexing of free space waves from guided waves," Opt. Express 12, 3072-3078 (2004).
[CrossRef] [PubMed]

S. Ura, "Selective guided mode coupling via bridging mode by integrated gratings for intraboard optical interconnects," Proc. SPIE 4652, 86-96 (2002).
[CrossRef]

Ushikubo, T.

Vervaeke, M.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Voigt, S.

S. Voigt, S. Kufner, M. Kufner, and I. Frese, "A refractive free-space microoptical 4 x 4 interconnect on chip level with optical fan-out fabricated by the LIGA technique," IEEE Photon. Technol. Lett. 14, 1484-1486 (2002).
[CrossRef]

Volckaerts, B.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Vynck, P.

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Wada, H.

Yamamoto, T.

Yuceturk, E.

Appl. Opt. (5)

IEEE Photon. Technol. Lett. (2)

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, "A guided-mode-selective focusing grating coupler," IEEE Photon. Technol. Lett. 16, 512-514 (2004).
[CrossRef]

S. Voigt, S. Kufner, M. Kufner, and I. Frese, "A refractive free-space microoptical 4 x 4 interconnect on chip level with optical fan-out fabricated by the LIGA technique," IEEE Photon. Technol. Lett. 14, 1484-1486 (2002).
[CrossRef]

IEEE Spectrum (1)

N. Savage, "Linking with light," IEEE SpectrumAugust2002, 32-36.
[CrossRef]

J. Selected Top. Quantum Electron. (1)

C. Debaes, M. Vervaeke, V. Baukens, H. Ottevaere, P. Vynck, P. Tuteleers, B. Volckaerts, W. Meeus, M. Brunfaut, J. V. Campenhout, A. Hermanne, and H. Thienpont, "Low-cost microoptical modules for MCM level optical interconnections," J. Selected Top. Quantum Electron. 9, 518-530 (2003).
[CrossRef]

Japn. J. Appl. Phys. (1)

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "Integrated-optic add/drop multiplexing of free-space waves for chip-to-chip optical interconnecting," Japn. J. Appl. Phys. 44, 7987-7992 (2005).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

S. Ura, "Selective guided mode coupling via bridging mode by integrated gratings for intraboard optical interconnects," Proc. SPIE 4652, 86-96 (2002).
[CrossRef]

Other (2)

<jrn> A. G. Kirk, D. V. Plant, T. H. Szymanski, Z. G. Vranesic, F. A. P. Tooley, D. R. Roiston, M. H. Ayliffe, F. K. Lacroix, B. Robertson, E. Bernier, and D. F. -Brosseau, "Design and implementation of a modulator-based free-space optical backplane for multiprocessor applications," Appl. Opt. 422465-2481 (2003).</jrn>
[CrossRef] [PubMed]

A. Horii, K. Shinoda, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, "0.5Gbit/s signal transmission in thin-film waveguide with free-space-wave add-drop multiplexers," in Tech. Digest CD-ROM of Pacific Rim Conf. Lasers & Electro-Opt., July11-15, 2005, Tokyo, Japan, 540-541.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic view of intra-board chip-to-chip optical interconnection with thin-film waveguide for 2-D parallel transmission from VCSEL array to PD array.

Fig. 2.
Fig. 2.

Schematic of interference exposure system developed for simultaneous integration of different-period DBRs.

Fig. 3.
Fig. 3.

Calculated wavelength dependence of coupling efficiencies of three DBRs with 0.6 mm length, 21 mm-2 chirp and 5.0 mm-1 coupling coefficient.

Fig. 4.
Fig. 4.

Period variations of two interference fringes with the same chirp rate α= 21 mm-2 against z position. Provided broken parts are masked, only solid parts are exposed to be the segmented and chirped DBRs.

Fig. 5.
Fig. 5.

Photograph of diffraction by eight DBRs integrated by two-times exposure. Because the waveguide was largely tilted against camera, only a part was just in focus.

Tables (1)

Tables Icon

Table 1. Measured Average Periods of the Fabricated DBRs

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 π ʌ ( z ) = 2 π ʌ ( 0 ) + 2 αz .
dA ( z ) dz = j κB ( z ) exp { 2 j ( Δ αz ) z } ,
dA ( z ) dz = j κ * A ( z ) exp { 2 j ( Δ αz ) z } ,
2 Δ = ( N 0 + N 1 ) ( 2 π λ 2 π λ c ) .
ʌ ex ( z ) = λ ex sin ϕ + sin γ ,
δ = sin 1 h R .
α = π z ( 1 ʌ ( z ) 1 ʌ ( 0 ) ) π h tan γ sin γ sin ϕ λ ex π h tan ϕ sin 2 δ cos ϕ λ ex 2 π cos 2 ϕ λ ex R sin ϕ .

Metrics