Abstract

Polarisation-entangled photon pairs from a two crystal, type-I spontaneous parametric down conversion source are used to make accurate measurements of the ellipsometric angles of a silicon dioxide film on silicon and of internal and external reflection from BK7 glass. Since our source produces an entangled state with some mixture, a novel technique based on quantum tomography was developed to estimate the components of the density matrix for the state before and after reflection from the samples. The ellipsometric angles are readily calculated from these components and experimental measurements made on the samples were found to be in good agreement with their expected values.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Phase-compensated ultra-bright source of entangled photons

J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat
Opt. Express 13(22) 8951-8959 (2005)

Fiber-based telecom-band degenerate-frequency source of entangled photon pairs

Jun Chen, Kim Fook Lee, Chuang Liang, and Prem Kumar
Opt. Lett. 31(18) 2798-2800 (2006)

Characterization of two-photon polarization mixed states generated from entangled-classical hybrid photon source

H. Kumano, K. Matsuda, S. Ekuni, H. Sasakura, and I. Suemune
Opt. Express 19(15) 14249-14259 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, The Netherlands, 1987).
  2. D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
    [Crossref]
  3. K. Vedam, “Spectroscopic ellipsometry: a historical overview,” Thin Solid Films 313–314, 1–9 (1998).
    [Crossref]
  4. T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” J. Phys. D Appl. Phys. 32, R45–R56 (1999).
    [Crossref]
  5. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
    [Crossref]
  6. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  7. A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature (London) 398, 189–190 (1999).
    [Crossref]
  8. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
    [Crossref]
  9. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  10. A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion,” Opt. Lett. 26, 1717–1719 (2001).
    [Crossref]
  11. A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-Photon Ellip-sometry,” J. Opt. Soc. Am. B 19, 656–662 (2002).
    [Crossref]
  12. A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
    [Crossref]
  13. K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
    [Crossref]
  14. A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).
    [Crossref]
  15. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization and Utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
    [Crossref]
  16. T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
    [Crossref]
  17. D. Dehlinger and M. W. Mitchell, “Entangled photon apparatus for the undergraduate laboratory,” Am. J. Phys. 70, 898–902 (2002).
    [Crossref]
  18. D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the under graduate laboratory,” Am. J. Phys. 70, 903–910 (2002).
    [Crossref]
  19. W. J. Munro, K. Nemoto, and A. G. White, “The Bell inequality: a measure of entanglement?” J. Mod. Opt. 48, 1239–1246 (2001).
  20. T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, “Statistics of Entangled-Photon Coincidences in Parametric Downconversion,” Ann. NY Acad. Sci. 755, 680–686 (1995).
    [Crossref]
  21. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, San Diego, California, 1998).
  22. J. Altepeter, E. Jeffrey, and P. Kwiat, “Phase-compensated ultra-bright source of entangled photons,” Opt. Express 13, 8951–8959 (2005).
    [Crossref] [PubMed]

2005 (1)

2004 (2)

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
[Crossref]

K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
[Crossref]

2003 (2)

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[Crossref]

2002 (5)

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-Photon Ellip-sometry,” J. Opt. Soc. Am. B 19, 656–662 (2002).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).
[Crossref]

D. Dehlinger and M. W. Mitchell, “Entangled photon apparatus for the undergraduate laboratory,” Am. J. Phys. 70, 898–902 (2002).
[Crossref]

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the under graduate laboratory,” Am. J. Phys. 70, 903–910 (2002).
[Crossref]

2001 (3)

W. J. Munro, K. Nemoto, and A. G. White, “The Bell inequality: a measure of entanglement?” J. Mod. Opt. 48, 1239–1246 (2001).

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion,” Opt. Lett. 26, 1717–1719 (2001).
[Crossref]

1999 (4)

A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature (London) 398, 189–190 (1999).
[Crossref]

T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” J. Phys. D Appl. Phys. 32, R45–R56 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization and Utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[Crossref]

1998 (1)

K. Vedam, “Spectroscopic ellipsometry: a historical overview,” Thin Solid Films 313–314, 1–9 (1998).
[Crossref]

1996 (1)

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

1995 (1)

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, “Statistics of Entangled-Photon Coincidences in Parametric Downconversion,” Ann. NY Acad. Sci. 755, 680–686 (1995).
[Crossref]

Abouraddy, A. F.

Altepeter, J.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Aspect, A.

A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature (London) 398, 189–190 (1999).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
[Crossref]

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, The Netherlands, 1987).

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, The Netherlands, 1987).

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Bycenski, K. J.

K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
[Crossref]

Dehlinger, D.

D. Dehlinger and M. W. Mitchell, “Entangled photon apparatus for the undergraduate laboratory,” Am. J. Phys. 70, 898–902 (2002).
[Crossref]

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the under graduate laboratory,” Am. J. Phys. 70, 903–910 (2002).
[Crossref]

Eberhard, P. H.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization and Utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Giuseppe, G. D.

K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
[Crossref]

Jaeger, G. S.

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[Crossref]

James, D. F. V.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization and Utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[Crossref]

Jeffrey, E.

Jenkins, T. E.

T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” J. Phys. D Appl. Phys. 32, R45–R56 (1999).
[Crossref]

Klyshko, D. N.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

Kwiat, P.

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization and Utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[Crossref]

Larchuk, T. S.

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, “Statistics of Entangled-Photon Coincidences in Parametric Downconversion,” Ann. NY Acad. Sci. 755, 680–686 (1995).
[Crossref]

Mitchell, M. W.

D. Dehlinger and M. W. Mitchell, “Entangled photon apparatus for the undergraduate laboratory,” Am. J. Phys. 70, 898–902 (2002).
[Crossref]

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the under graduate laboratory,” Am. J. Phys. 70, 903–910 (2002).
[Crossref]

Munro, W. J.

W. J. Munro, K. Nemoto, and A. G. White, “The Bell inequality: a measure of entanglement?” J. Mod. Opt. 48, 1239–1246 (2001).

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Nemoto, K.

W. J. Munro, K. Nemoto, and A. G. White, “The Bell inequality: a measure of entanglement?” J. Mod. Opt. 48, 1239–1246 (2001).

O’Brien, J. L.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Pittman, T. B.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

Pryde, G. J.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Ralph, T. C.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Rubin, M. H.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

Saleh, B. E. A.

K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
[Crossref]

A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).
[Crossref]

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-Photon Ellip-sometry,” J. Opt. Soc. Am. B 19, 656–662 (2002).
[Crossref]

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion,” Opt. Lett. 26, 1717–1719 (2001).
[Crossref]

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, “Statistics of Entangled-Photon Coincidences in Parametric Downconversion,” Ann. NY Acad. Sci. 755, 680–686 (1995).
[Crossref]

Sergienko, A. V.

K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
[Crossref]

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[Crossref]

A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).
[Crossref]

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-Photon Ellip-sometry,” J. Opt. Soc. Am. B 19, 656–662 (2002).
[Crossref]

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion,” Opt. Lett. 26, 1717–1719 (2001).
[Crossref]

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

Shih, Y. H.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

Strekalov, D. V.

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

Teich, M. C.

K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
[Crossref]

A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).
[Crossref]

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-Photon Ellip-sometry,” J. Opt. Soc. Am. B 19, 656–662 (2002).
[Crossref]

A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Ellipsometric measurements by use of photon pairs generated by spontaneous parametric downconversion,” Opt. Lett. 26, 1717–1719 (2001).
[Crossref]

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, “Statistics of Entangled-Photon Coincidences in Parametric Downconversion,” Ann. NY Acad. Sci. 755, 680–686 (1995).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Toussaint, K. C.

Vedam, K.

K. Vedam, “Spectroscopic ellipsometry: a historical overview,” Thin Solid Films 313–314, 1–9 (1998).
[Crossref]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

White, A. G.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

W. J. Munro, K. Nemoto, and A. G. White, “The Bell inequality: a measure of entanglement?” J. Mod. Opt. 48, 1239–1246 (2001).

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization and Utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Am. J. Phys. (2)

D. Dehlinger and M. W. Mitchell, “Entangled photon apparatus for the undergraduate laboratory,” Am. J. Phys. 70, 898–902 (2002).
[Crossref]

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the under graduate laboratory,” Am. J. Phys. 70, 903–910 (2002).
[Crossref]

Ann. NY Acad. Sci. (1)

T. S. Larchuk, M. C. Teich, and B. E. A. Saleh, “Statistics of Entangled-Photon Coincidences in Parametric Downconversion,” Ann. NY Acad. Sci. 755, 680–686 (1995).
[Crossref]

Contemp. Phys. (1)

A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003).
[Crossref]

J. Mod. Opt. (1)

W. J. Munro, K. Nemoto, and A. G. White, “The Bell inequality: a measure of entanglement?” J. Mod. Opt. 48, 1239–1246 (2001).

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. E. Jenkins, “Multiple-angle-of-incidence ellipsometry,” J. Phys. D Appl. Phys. 32, R45–R56 (1999).
[Crossref]

Nature (London) (2)

A. Aspect, “Bell’s inequality test: more ideal than ever,” Nature (London) 398, 189–190 (1999).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum Controlled-NOT Gate,” Nature (London) 426, 264–267 (2003).
[Crossref]

Opt. Commun. (1)

A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum entanglement and the two-photon Stokes parameters,” Opt. Commun. 201, 93–98 (2002).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (4)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60, R773–R776 (1999).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

K. C. Toussaint, G. D. Giuseppe, K. J. Bycenski, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Quantum ellipsometry using correlated-photon beams,” Phys. Rev. A 70, 023801 (2004).
[Crossref]

T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Two-photon geometric optics,” Phys. Rev. A 53, R2804–R2815 (1996).
[Crossref]

Phys. Rev. Lett. (1)

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization and Utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
[Crossref]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Thin Solid Films (2)

D. E. Aspnes, “Expanding horizons: new developments in ellipsometry and polarimetry,” Thin Solid Films 455–456, 3–13 (2004).
[Crossref]

K. Vedam, “Spectroscopic ellipsometry: a historical overview,” Thin Solid Films 313–314, 1–9 (1998).
[Crossref]

Other (2)

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, The Netherlands, 1987).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic Press, San Diego, California, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Entangled photon ellipsometer, based on Ref. [10].

Fig. 2.
Fig. 2.

Experimental apparatus: M1, M2 beam steering mirrors, BBO the two crystal source, HWP halfwave plates, QWP quarterwave plates, PBS polarising beam splitters, IF interference filters, D detectors. The dashed section of the figure shows the position of the equipment when the sample is removed for calibration.

Tables (3)

Tables Icon

Table 1. Experimental and expected values for the SiO2 – Si system

Tables Icon

Table 2. Experimental and expected values for BK7 glass

Tables Icon

Table 3. Experimental and expected values for total internal reflection in a glass prism

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

tan ψ = r p r s ,
Δ = arg ( r p r s )
Ψ = 1 1 + ε 2 ( H H + ε e V V )
Ψ = 1 1 + ( ε tan ψ ) 2 ( H H + ε tan ψ e i ( ϕ Δ ) V V ) ,
N c = C cos θ 1 cos θ 2 + ε tan ψ e i ( ϕ Δ ) sin θ 1 sin θ 2 2 ,
Ψ = c HH H H + c HV H V + c VH VH + c VV V V
ρ = w i i ( c HHi 2 c HHi c HVi * c HHi c VHi * c HHi c VVi * c HHi * c HVi c VHi 2 c HVi c VHi * c VHi c VVi * c HHi * c VHi c HVi * c VHi c VHi 2 c VHi c VVi * c HHi * c VVi c HVi * c VVi c VHi * c VVi c VVi 2 ) ,
ρ 11 = i w i c HHi 2
ρ 44 = i w i c VVi 2
ρ 41 = i w i c HHi * c VVi .
ψ r = R ( r p c HH H H + r s c HV HV + r p c VH VH + r s c VV VV )
ρ r 11 = R r p 2 ρ 11 ,
ρ r 44 = R r s 2 ρ 44 ,
tan ψ = ρ r 11 ρ 44 ρ 11 ρ r 44 .
ρ r 41 = R r s * r p ρ 41
= R r s r p e i Δ ρ 41 ,
Δ = arg ( ρ 41 ρ r 41 ) = arg ( ρ 41 ) arg ( ρ r 41 ) .
C ρ 11 = C tr ( ρ H H ) = N c ( H H ) ,
C ρ 44 = C tr ( ρ V V ) = N c ( V V ) ,
2 Cℜ ( ρ 41 ) = N c ( D D ) + N c ( A A ) N c ( R R ) N c ( L L )
2 Cℑ ( ρ 41 ) = N c ( D L ) + N c ( A R ) N c ( L A ) N c ( R D )
N c = C 2 ( cos 2 θ 1 + ε 2 sin 2 θ 1 + 2 ε cos ( ϕ ) cos θ 1 sin θ 1 ) .

Metrics