Abstract

A new way of generating high peak power terahertz radiation using ultra-short pulse lasers is demonstrated. The optical pulse from a titanium:sapphire laser system is stretched and modulated using a spatial filtering technique to produce a several picosecond long pulse modulated at the terahertz frequency. A collinear type II phase matched interaction is realized via angle tuning in a gallium selenide crystal. Peak powers of at least 1.5 kW are produced in a 5 mm thick crystal, and tunability is demonstrated between 0.7 and 2.0 THz. Simulations predict that 150 kW of peak power can be produced in a 5 mm thick crystal. The technique also allows for control of the terahertz bandwidth.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shi and Y. Ding, "A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
    [CrossRef]
  2. D. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
    [CrossRef]
  3. J. Xu and X.-C. Zhang, "Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation," Opt. Lett. 27, 1067-1069 (2002).
    [CrossRef]
  4. R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
    [CrossRef]
  5. K. Reimann, R. Smith, A. Weiner, T. Elsaesser, and M. Woerner, "Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter," Opt. Lett. 28, 471-473 (2003).
    [CrossRef] [PubMed]
  6. Y. Ding, "Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium," Opt. Lett. 29, 2650-2652 (2004).
    [CrossRef] [PubMed]
  7. D. Gordon, P. Sprangle, and C. Kapetanakos, "Analysis and simulations of optical rectification as a source of terahertz radiation," Tech. Rep. NRL/MR/6791-05-8869, Naval Research Laboratory (2005).
  8. J. Ahn, A. Efimov, R. Averitt, and A. Taylor, "Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses," Opt. Express 11, 2486-2496 (2003).
    [CrossRef] [PubMed]
  9. D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
    [CrossRef]
  10. R. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2003).
  11. V. Dimitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Heidelberg, 1999).
  12. I. B. Zotova and Y. J. Ding, "Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals," Appl. Opt. 40, 6654-6658 (2001).
    [CrossRef]

2004

W. Shi and Y. Ding, "A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

Y. Ding, "Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium," Opt. Lett. 29, 2650-2652 (2004).
[CrossRef] [PubMed]

2003

2002

2001

2000

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

1983

D. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
[CrossRef]

Ahn, J.

Allot, R.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Auston, D.

D. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
[CrossRef]

Averitt, R.

Brodschelm, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Collier, J.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Dangor, A.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Danson, C.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Ding, Y.

Y. Ding, "Efficient generation of high-power quasi-single-cycle terahertz pulses from a single infrared beam in a second-order nonlinear medium," Opt. Lett. 29, 2650-2652 (2004).
[CrossRef] [PubMed]

W. Shi and Y. Ding, "A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

Ding, Y. J.

Efimov, A.

Elsaesser, T.

Hawkes, S.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Huber, R.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Kingham, R.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Krushelnick, K.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Leitenstorfer, A.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Najmudin, Z.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Neely, D.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Reimann, K.

Shi, W.

W. Shi and Y. Ding, "A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

Smith, R.

Tauser, F.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

Taylor, A.

Weiner, A.

Woerner, M.

Xu, J.

Zhang, X.-C.

Zotova, I. B.

Appl. Opt.

Appl. Phys. Lett.

R. Huber, A. Brodschelm, F. Tauser, and A. Leitenstorfer, "Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz," Appl. Phys. Lett. 76, 3191-3193 (2000).
[CrossRef]

W. Shi and Y. Ding, "A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

D. Auston, "Subpicosecond electro-optic shock waves," Appl. Phys. Lett. 43, 713-715 (1983).
[CrossRef]

IEEE Trans. Plasma Sci.

D. Neely, J. Collier, R. Allot, C. Danson, S. Hawkes, Z. Najmudin, R. Kingham, K. Krushelnick, and A. Dangor, "Proposed beatwave experiment at RAL with the Vulcan CPA laser," IEEE Trans. Plasma Sci. 28, 1116-1121 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

D. Gordon, P. Sprangle, and C. Kapetanakos, "Analysis and simulations of optical rectification as a source of terahertz radiation," Tech. Rep. NRL/MR/6791-05-8869, Naval Research Laboratory (2005).

R. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2003).

V. Dimitriev, G. Gurzadyan, and D. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Heidelberg, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of optical rectification of a short modulated laser pulse.

Fig. 2.
Fig. 2.

Schematic of experimental setup. G1 is an 1800 g/mm grating. L1 is an f/10 lens placed 1 focal length (f = 50 cm) from G1. M2 is f away from L1. L1 is displaced vertically so that the return beam passes over M1. G2 is a 1.4 g/mm grating used to disperse THz pulses. F1 is a 3 mm thick black polyethylene filter used to extinguish the laser radiation while transmitting the THz radiation.

Fig. 3.
Fig. 3.

Theoretical phase mismatch developed in a 5 mm thick GaSe crystal vs. signal wavelength for a 0.8 micron wavelength pump, based on the dispersion relation of Ref. [11]. The crystal axis makes an angle of 1.67 degrees with respect to the wavevector. The pump is an ordinary wave and the idler is an extraordinary wave. The curve is insensitive to the polarization of the signal.

Fig. 4.
Fig. 4.

Comparison of experimental and numerical signals as a function of phase matching angle for a 1.0 THz modulation. The simulated signal is corrected for the 28% internal reflection expected to occur at the output of the crystal, and assumes uniform fluence throughout the 1 cm diameter crystal.

Fig. 5.
Fig. 5.

Simulated THz Waveforms at θ ext = 0° and 4.8°. The electric field is evaluated inside the crystal. The electric field is larger outside the crystal because of the fact that in air a smaller fraction of the wave energy is carried by the magnetic field and dielectric polarization. Taking into account the 28% internal reflection at the crystal output, the transmitted intensity would be 200 kW/cm2 and the peak electric field would be 12 kV/cm.

Fig. 6.
Fig. 6.

Experimental and simulated THz signal as a function of pump intensity in the crystal for 1.0 THz modulation. It must be emphasized that only the scaling can be compared. That is, the two vertical axes can be shifted with respect to one another until a calibration factor is specified. Note also that the pump intensity is averaged over the optical frequency, but not the modulation frequency.

Fig. 7.
Fig. 7.

Bolometer signal vs. grating angle for (a) 0.7 THz modulation (b) 1.0 THz modulation (c) 2.0 THz modulation. The dashed lines indicate the expected location of the three lowest diffracted orders assuming the signal frequency and the modulation frequency are the same.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

˜ i = i 2 e i ( ω 0 t k 0 z ) + c . c .
[ ( z i k 0 ) 2 ( t + i ω 0 ) 2 ] x = ( t + i ω 0 ) 2 [ ( χ ̂ 11 C ̂ χ ̂ 13 2 ) + x I x C ̂ χ ̂ 13 I z ]
[ ( z i k 0 ) 2 ( t + i ω 0 ) 2 ] y = ( t + i ω 0 ) 2 ( χ ̂ 22 y + I y )
z = C ̂ ( χ ̂ 13 x + I z )
χ ̂ ij = k = 0 ( i ) k k ! k χ ij ω k ω 0 k t k
C ̂ 1 n 33 2 δ ̂ n 33 4 + δ ̂ 2 n 33 6
δ ̂ = k = 1 ( i ) k k ! k χ 33 ω k ω 0 k t k
n ij 2 = 1 + χ ij ( ω 0 )
( v θ η + τ ) E x = τ n g 2 n θ 2 [ ψ 13 1 + ψ 33 ( S z + H z ) + S x + H x ]
( v o η + τ ) E y = τ n g 2 n o 2 [ S y + H y ]
E z = ψ 13 E x + H z + S z 1 + ψ 33
v θ = 2 n g n θ 2 n g 2
v o = 2 n g n o 2 n g 2
( τ 2 + v i τ + Ω i 2 ) H i = ρ i E i

Metrics