Abstract

Two-dimensional finite-difference time-domain (FDTD) method has been performed to numerically investigate the transmission through a one-dimension cupped surface metallic grating structure. The concept of coupling of optical modes in the notches and main slits, introduced by Crouse and Keshavareddy [1], is examined further in our work. Unexpected phenomenon is shown that even horizontal surface plasmons (HSPs) are inhibited, the transmission still can be enhanced or suppressed. And the periodicity of transmission depending on the phase change of the light striking on the grating surface is discovered. A hybrid optical mode combined by cavity mode and diffracted evanescent wave mode [2] is introduced to analyze the phenomenon.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express. 13, 7760-7771 (2005).
    [CrossRef] [PubMed]
  2. H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express. 12, 3629-3651 (2004).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
    [CrossRef]
  4. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
    [CrossRef]
  5. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  6. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
    [CrossRef]
  7. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  8. Q. Cao and P. Lalanne," Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  9. P. N. Stavrinou and L. Solymar, "The propagation of electromagnetic power through subwavelength slits in a metallic grating," Opt. Commun. 206,17-223 (2002).
    [CrossRef]
  10. X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
    [CrossRef]
  11. K.G. Lee and Q-Han Park,"Coupling of Surface Plasmon Polaritons and Light in Metallic nanonoslits, " Phys. Rev. Lett..95, 103902 (2005)
    [CrossRef] [PubMed]
  12. E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, London 1985).
  13. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston, MA 2000).
  14. J. B. Jubkins, and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings, "J. Opt. Soc. Am. A. 12, 1974 (1995).
    [CrossRef]
  15. P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
    [CrossRef]

2005 (2)

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express. 13, 7760-7771 (2005).
[CrossRef] [PubMed]

2004 (1)

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express. 12, 3629-3651 (2004).
[CrossRef] [PubMed]

2002 (2)

Q. Cao and P. Lalanne," Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

P. N. Stavrinou and L. Solymar, "The propagation of electromagnetic power through subwavelength slits in a metallic grating," Opt. Commun. 206,17-223 (2002).
[CrossRef]

2001 (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

2000 (1)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

1999 (2)

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
[CrossRef]

1995 (1)

J. B. Jubkins, and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings, "J. Opt. Soc. Am. A. 12, 1974 (1995).
[CrossRef]

1994 (1)

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne," Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Crouse, D.

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express. 13, 7760-7771 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Garcia-Vidal, F.J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
[CrossRef]

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

Harms, P.

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

Jiao, X.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Jubkins, J. B.

J. B. Jubkins, and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings, "J. Opt. Soc. Am. A. 12, 1974 (1995).
[CrossRef]

Keshavareddy, P.

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express. 13, 7760-7771 (2005).
[CrossRef] [PubMed]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

Ko, W.

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne," Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express. 12, 3629-3651 (2004).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
[CrossRef]

Li, Q.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Lu, Y.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Martin-Moreno, L.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Ming, H.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Mittra, R.

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

Pellerin, K. M.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Solymar, L.

P. N. Stavrinou and L. Solymar, "The propagation of electromagnetic power through subwavelength slits in a metallic grating," Opt. Commun. 206,17-223 (2002).
[CrossRef]

Stavrinou, P. N.

P. N. Stavrinou and L. Solymar, "The propagation of electromagnetic power through subwavelength slits in a metallic grating," Opt. Commun. 206,17-223 (2002).
[CrossRef]

Tang, L.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Thio, T.

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express. 12, 3629-3651 (2004).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, "Control of optical transmission through metals perforated with subwavelength hole arrays," Opt. Lett. 24, 256-258 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
[CrossRef]

Wang, P.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
[CrossRef]

Xie, J.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Yao, P.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Zhang, D.

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Ziolkowski, R. W.

J. B. Jubkins, and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings, "J. Opt. Soc. Am. A. 12, 1974 (1995).
[CrossRef]

Appl. Phys. B. (1)

X. Jiao, P. Wang, L. Tang, Y. Lu, Q. Li, D. Zhang, P. Yao, H. Ming, and J. Xie, "Fabry-Perot-like phenomenon in the surface plasmons resonant transmission of metallic gratings with very narrow slits," Appl. Phys. B. 80, 301-305 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

P. Harms, R. Mittra, and W. Ko, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Trans. Antennas Propag. 42, 1317 (1994).
[CrossRef]

J. Opt. Soc. Am. A. (1)

J. B. Jubkins, and R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings, "J. Opt. Soc. Am. A. 12, 1974 (1995).
[CrossRef]

Nature (London) (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London).  391, 667-669 (1998).
[CrossRef]

Opt. Commun. (2)

P. N. Stavrinou and L. Solymar, "The propagation of electromagnetic power through subwavelength slits in a metallic grating," Opt. Commun. 206,17-223 (2002).
[CrossRef]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, and L. Martin-Moreno, and F.J. Garcıa-Vidal, "Evanescently coupled resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001).
[CrossRef]

Opt. Express. (2)

D. Crouse and P. Keshavareddy, "Role of optical and surface plasmon modes in enhanced transmission and applications," Opt. Express. 13, 7760-7771 (2005).
[CrossRef] [PubMed]

H. J. Lezec and T. Thio, "Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays," Opt. Express. 12, 3629-3651 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Q. Cao and P. Lalanne," Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Other (3)

K.G. Lee and Q-Han Park,"Coupling of Surface Plasmon Polaritons and Light in Metallic nanonoslits, " Phys. Rev. Lett..95, 103902 (2005)
[CrossRef] [PubMed]

E. D. Palik, Handbook of Optical Constants of Solids, (Academic Press, London 1985).

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., (Artech House, Boston, MA 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

S1 is the classical lamellar grating profile. S2 has notches (gray part) in both front and back surfaces

Fig. 2.
Fig. 2.

(a).The zero-order transmission spectra of S1, S2 with n =1.3, 2.5 and 3.2. (b).The transmission spectrum at λ=1500nm versus refractive index n in S2. (c) The transmission spectra of S1, S2 with n =2.5, 5, 7.5.

Fig. 3.
Fig. 3.

(a)The electric field time-average distribution of |E|2 at the peaks of transmission spectra of S1 and S2 with n =2.5.(b)The pointing vector distribution at the peaks of transmission spectra of S1 and S2 with n =2.5.

Fig. 4.
Fig. 4.

(a) The near-field electric field time-average distribution of |E|2 with n =3.2 and λ=1550nm. (b) The pointing vector distribution with n =3.2 and λ=1550nm.

Fig. 5.
Fig. 5.

(a) The near-field electric field time-average distribution of |E|2 with n =1.3 and λ=1550nm. (b) The pointing vector distribution with n =1.3 and λ=1550nm.

Fig. 6.
Fig. 6.

The zero-order transmission spectra of S1(Au), S2(Au) with n =1.3, 2.5 and 3.2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T c ( λ ) A 1 ( λ ; n 1 , P 1 , d 1 ) T H ( λ ; n H , d , t ) A 2 ( λ ; n 2 , P 2 , d 2 )
A 1 ( λ ) = A 2 ( λ ) ( 1 + 2 j = 1 N 1 jp cos ( 2 π λ n 0 jp + π 2 + Δ ϕ ) ) 2

Metrics