Abstract

The generation regimes of an all-fiber passively mode-locked ytterbium laser with intra-cavity photonic crystal fiber have been studied with the aim to provide recipes for obtaining chirp-free sub-picosecond pulses directly from the cavity. Small-beam area photonic-crystal fiber is used for dispersion compensation of the intra-cavity normal dispersion of Yb-doped and single-mode fibers as well as for spectrum expanding due to enhanced nonlinearity. Regions of the gain and fiber parameters near the generation threshold were found in both cases of normal and anomalous net intra-cavity dispersion, which provide a stable generation of ultra-short sub-picosecond pulses directly from the cavity. Laser parameters of a transition to the multi-pulsed generation regimes were also found.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers

Souad Chouli, José M. Soto-Crespo, and Philippe Grelu
Opt. Express 19(4) 2959-2964 (2011)

Generation of stretched pulses and dissipative solitons at 2  μm from an all-fiber mode-locked laser using carbon nanotube saturable absorbers

Yu Wang, Shaif-ul Alam, Elena D. Obraztsova, Anatoly S. Pozharov, Sze Y. Set, and Shinji Yamashita
Opt. Lett. 41(16) 3864-3867 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
    [Crossref]
  2. D. T. Walton, J. Nees, and G. Mourou, “Broad-bandwidth pulse amplification to the 10- µJ level in an ytterbium-doped germanosilicate fiber,” Opt. Lett. 21, 1061–1063 (1996).
    [Crossref] [PubMed]
  3. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+:silica fiber laser,” Opt. Lett. 22, 316–318 (1997).
    [Crossref] [PubMed]
  4. H. Lim, F. Ö. Ilday, and F. W. Wise, “Femtosecond ytterbium doped fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10, 1497–1500 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497.
    [PubMed]
  5. Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express 12, 3872–3877 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-16-3872.
    [Crossref] [PubMed]
  6. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express 13, 9346–9351 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9346.
    [Crossref] [PubMed]
  7. F. Ö. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2716.
    [Crossref] [PubMed]
  8. H. Lim, A. Chong, and F. Wise, “Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber,” Opt. Express 13, 3460–3464 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3460.
    [Crossref] [PubMed]
  9. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
    [Crossref] [PubMed]
  10. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref] [PubMed]
  11. I. N. Duling III, “Subpicosecond all-fiber Erbium laser,” Electron Lett. 27, 544–545 (1991).
    [Crossref]
  12. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [Crossref] [PubMed]
  13. H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser,” Opt. Lett. 28, 660–662 (2003).
    [Crossref] [PubMed]
  14. F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11, 3550–3554 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3550.
    [Crossref] [PubMed]
  15. V. P. Kalosha, M. Müller, J. Herrmann, and S. Gatz, “Spatiotemporal model of femtosecond pulse generation in Kerr-lens mode-locked solid-state lasers,” J. Opt. Soc. Am. B 15, 535–550 (1998).
    [Crossref]
  16. V. P. Kalosha, M. Müller, and J. Herrmann, “Theory of solid-state laser mode locking by coherent semiconductor quantum-well absorbers,” J. Opt. Soc. Am. B 16, 323–338 (1999).
    [Crossref]
  17. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
    [Crossref] [PubMed]
  18. J. N. Kutz, B. C. Collings, K. Bergman, S. Tsuda, S. T. Cundiff, W. H. Knox, P. Holmes, and M. Weinstein, “Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector,” J. Opt. Soc. Am. B 14, 2681–2689 (1997).
    [Crossref]
  19. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).
    [Crossref]
  20. G. P. Agrawal, “Nonlinear fiber optics” (San Diego, Academic Press, 1995).
  21. http://www.ino.ca.
  22. A. W. Snyder and J. D. Love, “Optical Waveguide Theory” (London, Chapman and Hall, 1983).
  23. J. Jin, “The Finite Element Method in Electrodynamics” (New York, Wiley, 1993).
  24. http://www.batop.de.
  25. F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-835.
    [Crossref] [PubMed]

2005 (3)

2004 (3)

2003 (2)

2002 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

1999 (1)

1998 (1)

1997 (2)

1996 (2)

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

1993 (1)

1991 (2)

Agrawal, G. P.

G. P. Agrawal, “Nonlinear fiber optics” (San Diego, Academic Press, 1995).

Atkin, D. M.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

Bergman, K.

Birks, T. A.

Buckley, J.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Campbell, S.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

Cautaerts, V.

Chen, J.

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Collings, B. C.

Cundiff, S. T.

Dawes, J.M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

Deng, Y.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Duling III, I. N.

I. N. Duling III, “Subpicosecond all-fiber Erbium laser,” Electron Lett. 27, 544–545 (1991).
[Crossref]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Fujimoto, J. G.

Gatz, S.

Hanna, D. C.

V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, “Stretched pulse Yb3+:silica fiber laser,” Opt. Lett. 22, 316–318 (1997).
[Crossref] [PubMed]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Haus, H. A.

Herrmann, J.

Hohmuth, R.

Holmes, P.

Ilday, F. Ö.

Ippen, E. P.

Jin, J.

J. Jin, “The Finite Element Method in Electrodynamics” (New York, Wiley, 1993).

Kalosha, V. P.

Kärtner, F.

Knight, J.

Knight, J. C.

Knox, W.

Knox, W. H.

Koch, M.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Kutz, J. N.

Kuznetsova, L.

Lim, H.

Limpert, J.

Love, J. D.

A. W. Snyder and J. D. Love, “Optical Waveguide Theory” (London, Chapman and Hall, 1983).

Lu, F.

Luan, F.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

Mangan, B.

Mourou, G.

Müller, M.

Nees, J.

Nelson, L. E.

Nielsen, C. K.

Ortaç, B.

Paschotta, R.

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

Reid, D.

Richardson, D. J.

Richter, W.

Roberts, P.

Russell, P.

Russell, P. St. J.

Schreiber, T.

Snyder, A. W.

A. W. Snyder and J. D. Love, “Optical Waveguide Theory” (London, Chapman and Hall, 1983).

Tamura, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

Tropper, A. C.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

Tsuda, S.

Tünnermann, A.

Walton, D. T.

Weinstein, M.

Wicks, G.

Williams, D.

Wise, F.

Wise, F. W.

Xiao, D.

Electron Lett. (1)

I. N. Duling III, “Subpicosecond all-fiber Erbium laser,” Electron Lett. 27, 544–545 (1991).
[Crossref]

IEEE J. Sel. Topics Quant. Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J.M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 µm region,” IEEE J. Sel. Topics Quant. Electron.,  1, 2–13 (1995).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Express (7)

F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11, 3550–3554 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3550.
[Crossref] [PubMed]

F. Luan, J. Knight, P. Russell, S. Campbell, D. Xiao, D. Reid, B. Mangan, D. Williams, and P. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12, 835–840 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-835.
[Crossref] [PubMed]

H. Lim, F. Ö. Ilday, and F. W. Wise, “Femtosecond ytterbium doped fiber laser with photonic crystal fiber for dispersion control,” Opt. Express 10, 1497–1500 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1497.
[PubMed]

Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express 12, 3872–3877 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-16-3872.
[Crossref] [PubMed]

C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express 13, 9346–9351 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9346.
[Crossref] [PubMed]

F. Ö. Ilday, J. Chen, and F. Kärtner, “Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser,” Opt. Express 13, 2716–2721 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2716.
[Crossref] [PubMed]

H. Lim, A. Chong, and F. Wise, “Environmentally-stable femtosecond ytterbium fiber laser with birefringent photonic bandgap fiber,” Opt. Express 13, 3460–3464 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-9-3460.
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).
[Crossref] [PubMed]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref] [PubMed]

Other (5)

G. P. Agrawal, “Nonlinear fiber optics” (San Diego, Academic Press, 1995).

http://www.ino.ca.

A. W. Snyder and J. D. Love, “Optical Waveguide Theory” (London, Chapman and Hall, 1983).

J. Jin, “The Finite Element Method in Electrodynamics” (New York, Wiley, 1993).

http://www.batop.de.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the laser. YDF: Yb-doped fiber; SMF: single-mode fiber; DCF: photonic crystal fiber as a dispersion-compensating fiber; SBR: saturable Bragg reflector; Out: output coupler; Pump: pump coupler.

Fig. 2.
Fig. 2.

Group-velocity dispersion parameter (a) and effective area (b) versus wavelength for silica fibers as indicated, used in the simulations of the laser dynamics. The parameters of the fibers are given in Table 1. The results for the YDF and SMF were calculated under the assumptions of step-index refractive index profile and with the help of exact analytical solution of the vector wave equation [22]. The results for the DCF were calculated under the assumption of the hexagonal air hole structure in silica (inset) and by the numerical solution of the vector wave equation by the finite-element method [23]. The waveguide dispersion and silica material dispersion [20] were taken into account.

Fig. 3.
Fig. 3.

Steady-state pulse spectrum for DCF length between 60 and 115 cm (from the bottom to the top) (a), spectrum peak position versus DCF length (inset) and steady-state pulse duration (red curves) and corresponding transform-limited pulse duration (green curves) as functions of DCF length and net intra-cavity group-velocity dispersion (b) in the case when Kerr nonlinearity in all intra-cavity fibers is neglected and for the gain parameter g 0=0.75 dB/m. Spectra are shown for the DCF lengths indicated by circles in the inset.

Fig. 4.
Fig. 4.

Steady-state pulse temporal shape (lhs column), spectrum and group delay (rhs column) for L DCF =85 (top row) and 88 cm (bottom row) in the case without (curves 1) and with (curves 2) Kerr nonlinearity in the DCF fiber and for the gain parameter g 0=0.7 dB/m.

Fig. 5.
Fig. 5.

Steady-state pulse duration (red curves) and corresponding transform-limited pulse duration (green curves) versus gain parameter g 0 for different DCF length as indicated in the case of the normal (a) and anomalous (b) net intra-cavity group-velocity dispersion.

Fig. 6.
Fig. 6.

Pulse transformation along the cavity in the case of normal net intra-cavity group-velocity dispersion, when L DCF =86 cm, and g 0=0.5 dB/m: (a) pulse temporal shape (red curves, left axis) and instantaneous frequency shift (green curves, right axis), (b) spectrum (red curves, left axis) and group delay (green curves, right axis) after the propagation through YDF (curves 1), SMF (2) and DCF (3).

Fig. 7.
Fig. 7.

The same as in Fig. 6 but in the case of anomalous net intra-cavity group-velocity dispersion, when L=87 cm, and g 0=0.6 dB/m.

Tables (1)

Tables Icon

Table 1. Intra-cavity fiber parameters used in the simulations of the laser dynamics

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E z = 1 2 i β 2 2 E t 2 + i γ E 2 E Γ E + g ( z ) ( 1 + τ g 2 2 t 2 ) E ,
g ( z ) = g 0 ( 1 + 𝓔 0 ( z ) 𝓔 sat ) ,
E z = 1 2 i β 2 2 E t 2 + i γ E 2 E Γ E .
δ E ( t ) E ( t ) = σ lin σ fast ( 1 E ( t ) 2 E peak 2 )
σ slow { 1 𝓔 ( t ) 𝓔 0 exp [ H ( t t peak ) t t peak τ slow ] } .

Metrics