Abstract

When a fiber Fabry-Perot is used in an ultra-sensitive strain detection system via a radio-frequency interrogation scheme, its frequency discrimination properties can be enhanced by reducing the linewidth of its resonance. This increases the signal-to-noise ratio, and thus suppresses the strain equivalent noise floor. We demonstrate this improvement in a long-distance high performance remote sensing system and show that in reflection, it can mitigate the effects of random phase noise introduced by Rayleigh back-scattering. In transmission, it improves the remote system sensitivity to sub-picostrain resolution, which surpasses any other long-distance remote sensing system to date. With the reduced fiber Fabry-Perot linewidth, all noise sources in the delivery fiber become irrelevant, as the transmission system is limited only by the pre-stabilized laser frequency noise.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. JongH. Chow, Ian C. M. Littler, Glenn de Vine, David E. McClelland, and Malcolm B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," IEEE J. Lightwave Technol. 23, 1881- 1889 (2005).
    [CrossRef]
  2. MalcolmB.  Gray, Jong H. Chow, Ian C. M. Littler, and David E. McClelland, "Ultra-High resolution strain sensing by phase-sensitive interrogation of a passive fiber Bragg resonator," Proceedings of SPIE 17th International Conference on Optical Fiber Sensors, SPIE 5855B, 623-636, Bruges, Belgium (2005).
  3. JongH. Chow, David E. McClelland, Malcolm B. Gray, and Ian C. M. Littler, "Demonstration of a passive sub-picostrain fiber strain sensor," Opt. Lett. 30, 1923-1925 (2005).
    [CrossRef] [PubMed]
  4. ClayK. Kirkendall, and Anthony Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D,  37, R197-R216 (2004).
    [CrossRef]
  5. AlanD. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  6. Ping Wan and Jan Conradi, "Impact of double Rayleigh backscatter noise on digital and analog fiber systems," J. Lightwave Technol. 14, 288-297 (1996).
    [CrossRef]
  7. G.A. Cranch, A. Dandridge, and C.K. Kirkendall, "Suppression of double Rayleigh scattering-induced excess noise in remotely interrogated fiber-optic interferometric sensors," IEEE Photon. Technol. Lett. 15, 1582-1584 (2003).
    [CrossRef]
  8. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  9. Stephane Schilt, Luc Thevenaz, and Philippe Robert, "Wavelength modulation spectroscopy: combined frequency and intensity laser modulation," Appl. Opt. 42, 6728-6738 (2003).
    [CrossRef] [PubMed]
  10. K Wanser, "Fundamental phase noise limit in optical fibres due to temperature fluctuations," Electron. Lett. 28, 53-54, (1992).
    [CrossRef]
  11. X. Zhu, and D. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation," J. Opt. Soc. Am. B 14, 1945-1950 (1997).
    [CrossRef]
  12. G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, "Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation," Opt. Express 13, 2377-2384 (2005).
    [CrossRef] [PubMed]
  13. Dennis Derickson, Fiber Optic Test and Measurement, (Prentice Hall, Upper Saddle River, New Jersey, 1998).
  14. H. Rhode, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Optical decay from a Fabry-Perot cavity faster than the decay time," J. Opt. Soc. Am. B 16, 1425-1429 (2002).
    [CrossRef]
  15. Manish Gupta, Hong Jiao, and Anthony O’Keefe, "Cavity-enhanced spectroscopy in optical fibers," Opt. Lett. 27, 1878-1880 (2002).
    [CrossRef]

2005

2004

ClayK. Kirkendall, and Anthony Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D,  37, R197-R216 (2004).
[CrossRef]

2003

G.A. Cranch, A. Dandridge, and C.K. Kirkendall, "Suppression of double Rayleigh scattering-induced excess noise in remotely interrogated fiber-optic interferometric sensors," IEEE Photon. Technol. Lett. 15, 1582-1584 (2003).
[CrossRef]

Stephane Schilt, Luc Thevenaz, and Philippe Robert, "Wavelength modulation spectroscopy: combined frequency and intensity laser modulation," Appl. Opt. 42, 6728-6738 (2003).
[CrossRef] [PubMed]

2002

H. Rhode, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Optical decay from a Fabry-Perot cavity faster than the decay time," J. Opt. Soc. Am. B 16, 1425-1429 (2002).
[CrossRef]

Manish Gupta, Hong Jiao, and Anthony O’Keefe, "Cavity-enhanced spectroscopy in optical fibers," Opt. Lett. 27, 1878-1880 (2002).
[CrossRef]

1997

X. Zhu, and D. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation," J. Opt. Soc. Am. B 14, 1945-1950 (1997).
[CrossRef]

AlanD. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

1996

Ping Wan and Jan Conradi, "Impact of double Rayleigh backscatter noise on digital and analog fiber systems," J. Lightwave Technol. 14, 288-297 (1996).
[CrossRef]

1992

K Wanser, "Fundamental phase noise limit in optical fibres due to temperature fluctuations," Electron. Lett. 28, 53-54, (1992).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Alan,

AlanD. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Blatt, R.

H. Rhode, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Optical decay from a Fabry-Perot cavity faster than the decay time," J. Opt. Soc. Am. B 16, 1425-1429 (2002).
[CrossRef]

Cassidy, D.

Clay,

ClayK. Kirkendall, and Anthony Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D,  37, R197-R216 (2004).
[CrossRef]

Cranch, G.A.

G.A. Cranch, A. Dandridge, and C.K. Kirkendall, "Suppression of double Rayleigh scattering-induced excess noise in remotely interrogated fiber-optic interferometric sensors," IEEE Photon. Technol. Lett. 15, 1582-1584 (2003).
[CrossRef]

Dandridge, A.

G.A. Cranch, A. Dandridge, and C.K. Kirkendall, "Suppression of double Rayleigh scattering-induced excess noise in remotely interrogated fiber-optic interferometric sensors," IEEE Photon. Technol. Lett. 15, 1582-1584 (2003).
[CrossRef]

De Natale, P.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Eschner, J.

H. Rhode, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Optical decay from a Fabry-Perot cavity faster than the decay time," J. Opt. Soc. Am. B 16, 1425-1429 (2002).
[CrossRef]

Ferraro, P.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Gagliardi, G.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Jong,

JongH. Chow, Ian C. M. Littler, Glenn de Vine, David E. McClelland, and Malcolm B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," IEEE J. Lightwave Technol. 23, 1881- 1889 (2005).
[CrossRef]

JongH. Chow, David E. McClelland, Malcolm B. Gray, and Ian C. M. Littler, "Demonstration of a passive sub-picostrain fiber strain sensor," Opt. Lett. 30, 1923-1925 (2005).
[CrossRef] [PubMed]

Kirkendall, C.K.

G.A. Cranch, A. Dandridge, and C.K. Kirkendall, "Suppression of double Rayleigh scattering-induced excess noise in remotely interrogated fiber-optic interferometric sensors," IEEE Photon. Technol. Lett. 15, 1582-1584 (2003).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Rhode, H.

H. Rhode, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Optical decay from a Fabry-Perot cavity faster than the decay time," J. Opt. Soc. Am. B 16, 1425-1429 (2002).
[CrossRef]

Salza, M.

Schmidt-Kaler, F.

H. Rhode, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Optical decay from a Fabry-Perot cavity faster than the decay time," J. Opt. Soc. Am. B 16, 1425-1429 (2002).
[CrossRef]

Wanser, K

K Wanser, "Fundamental phase noise limit in optical fibres due to temperature fluctuations," Electron. Lett. 28, 53-54, (1992).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Zhu, X.

Appl. Opt.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser phase and frequency stabilization using an optical resonator," Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Electron. Lett.

K Wanser, "Fundamental phase noise limit in optical fibres due to temperature fluctuations," Electron. Lett. 28, 53-54, (1992).
[CrossRef]

IEEE J. Lightwave Technol.

JongH. Chow, Ian C. M. Littler, Glenn de Vine, David E. McClelland, and Malcolm B. Gray, "Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications," IEEE J. Lightwave Technol. 23, 1881- 1889 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

G.A. Cranch, A. Dandridge, and C.K. Kirkendall, "Suppression of double Rayleigh scattering-induced excess noise in remotely interrogated fiber-optic interferometric sensors," IEEE Photon. Technol. Lett. 15, 1582-1584 (2003).
[CrossRef]

J. Lightwave Technol.

AlanD. Kersey, Michael A. Davis, Heather J. Patrick, Michel LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. Joseph Friebele, "Fiber Grating Sensors," J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Ping Wan and Jan Conradi, "Impact of double Rayleigh backscatter noise on digital and analog fiber systems," J. Lightwave Technol. 14, 288-297 (1996).
[CrossRef]

J. Opt. Soc. Am. B

X. Zhu, and D. Cassidy, "Modulation spectroscopy with a semiconductor diode laser by injection-current modulation," J. Opt. Soc. Am. B 14, 1945-1950 (1997).
[CrossRef]

H. Rhode, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Optical decay from a Fabry-Perot cavity faster than the decay time," J. Opt. Soc. Am. B 16, 1425-1429 (2002).
[CrossRef]

J. Phys. D

ClayK. Kirkendall, and Anthony Dandridge, "Overview of high performance fibre-optic sensing," J. Phys. D,  37, R197-R216 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

MalcolmB.  Gray, Jong H. Chow, Ian C. M. Littler, and David E. McClelland, "Ultra-High resolution strain sensing by phase-sensitive interrogation of a passive fiber Bragg resonator," Proceedings of SPIE 17th International Conference on Optical Fiber Sensors, SPIE 5855B, 623-636, Bruges, Belgium (2005).

Dennis Derickson, Fiber Optic Test and Measurement, (Prentice Hall, Upper Saddle River, New Jersey, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Theoretical normalized error signal size vs. ν m ν 1/2 ratio; and (b) error signal slope vs. ν m ν 1/2 ratio. The insets illustrate the operating regimes for the two chosen FFP resonances in our experiment.

Fig. 2.
Fig. 2.

Experimental setup showing the laser and stabilization cavity together with the FFP sensor in the anechoic chamber. The 15 MHz signal generator was used to modulate the current of the laser, as well as providing the local oscillator for demodulation electronics. The sensor was interrogated remotely after a fiber length of L1. For reflection sensing, the outbound and return was the same fiber, while for transmission sensing the transmitted light was detected after a further L2 of inbound fiber. Isolator 2 is present only for transmission sensing.

Fig. 3.
Fig. 3.

Comparison between demodulated reflection error signal scans of (a) a FFP resonance with FWHM of 176 MHz, vs. (b) a FWHM of 44 MHz. In reflection, the outbound and return delivery is the same fiber of 5 km.

Fig. 4.
Fig. 4.

The calibrated noise spectra of the fiber Fabry-Perot sensor in reflection, with the same outbound and return fiber of 5 km, using a resonance Δν 1/2 of (i) 176 MHz; and (ii) 44 MHz, when interrogated remotely by RF current modulation of the diode laser. An external mechanical signal of 0.34 nm at 216 Hz was applied to the FFP via a PZT.

Fig. 5.
Fig. 5.

(i) The calibrated noise spectrum of the Fiber Fabry-Perot sensor in transmission when its resonance Δν 1/2 of 44 MHz was interrogated remotely by RF current modulation of the diode laser after 21 km of fiber. It is overlaid with (ii) the strain equivalent frequency noise of the pre-stabilized laser. The transmitted light was returned via a further 10 km of inbound delivery fiber before detection and demodulation.

Tables (2)

Tables Icon

Table 1. Summary of calculated and experimental reflected error signal ratios for our two operating regimes.

Tables Icon

Table 2. Summary of calculated and experimental transmitted error signal ratios for our two operating regimes.

Metrics