Abstract

A new scalable self-referencing sensor network with low insertion losses implemented in Coarse Wavelength Division Multiplexing (CWDM) technology is reported. It allows obtaining remote self-referenced measurements with a full-duplex fibre downlead up to 35 km long, with no need for optical amplification. Fibre Bragg gratings (FBG) are used in order to achieve a reflective configuration, thus increasing the sensitivity of the optical transducers. Low-cost off-the-shelf devices in CWDM technology can be used to implement and scale the network. Ring resonator (RR) based incoherent interferometers at the measuring points are used as self-referencing technique. A theoretical analysis of power budget of the topology is reported, with a comparison between the proposed network and a conventional star topology. Finally, the new configuration has been experimentally demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.M. Baptista, J.L. Santos, A.S. Lage, "Mach-Zehnder and Michelson topologies for self-referencing fiber optic intensity sensors," Opt. Eng. 39, 1636-1644 (2000).
    [CrossRef]
  2. C. Vázquez, J. Montalvo, P.C. Lallana, "Radio-Frequency Ring Resonators for Self-Referencing Fibre-Optic Intensity Sensors," Opt. Eng. Lett. 44, 1-2, (2005).
  3. R.I. MacDonald, R. Nychka, "Differential Measurement Technique for Optical Fibre Sensors," Electron. Lett. 27, 2194-2196 (1991).
    [CrossRef]
  4. S. Diaz, M. López-Amo, "Comparison of WDM distributed fiber Raman amplifier networks for sensors," Opt. Express 14, 1401-1407 (2006).
    [CrossRef] [PubMed]
  5. S. Abad, M. López-Amo, "Single and double distributed optical amplifier fiber bus networks with wavelength-division multiplexing for photonic sensors," Optics Letters 24, 805-807 (1999).
    [CrossRef]
  6. S. Abad, M. López-Amo, "Fiber Bragg grating-based self-referencing technique for wavelength-multiplexed intensity sensors," Opt. Lett. 27,222-224 (2002).
    [CrossRef]
  7. J. Montalvo, C. Vázquez, D.S. Montero, "Frequency response of two ring-resonators in series using fibre Bragg Gratings," in Proc. Fourth Spanish Meeting on Optoelectronics (OPTOEL‘05), pp. 201-205 (2005).
  8. C. Vázquez, J. Montalvo, D.S. Montero, Electronics Technology Department, Carlos III University of Madrid, 15 Butarque Street, Leganés, Madrid, are preparing a manuscript to be called "Self-referencing fiber-optic intensity sensors using Ring Resonators and Fibre Bragg Gratings."

2006 (1)

2005 (1)

C. Vázquez, J. Montalvo, P.C. Lallana, "Radio-Frequency Ring Resonators for Self-Referencing Fibre-Optic Intensity Sensors," Opt. Eng. Lett. 44, 1-2, (2005).

2002 (1)

2000 (1)

J.M. Baptista, J.L. Santos, A.S. Lage, "Mach-Zehnder and Michelson topologies for self-referencing fiber optic intensity sensors," Opt. Eng. 39, 1636-1644 (2000).
[CrossRef]

1999 (1)

S. Abad, M. López-Amo, "Single and double distributed optical amplifier fiber bus networks with wavelength-division multiplexing for photonic sensors," Optics Letters 24, 805-807 (1999).
[CrossRef]

1991 (1)

R.I. MacDonald, R. Nychka, "Differential Measurement Technique for Optical Fibre Sensors," Electron. Lett. 27, 2194-2196 (1991).
[CrossRef]

Abad, S.

S. Abad, M. López-Amo, "Fiber Bragg grating-based self-referencing technique for wavelength-multiplexed intensity sensors," Opt. Lett. 27,222-224 (2002).
[CrossRef]

S. Abad, M. López-Amo, "Single and double distributed optical amplifier fiber bus networks with wavelength-division multiplexing for photonic sensors," Optics Letters 24, 805-807 (1999).
[CrossRef]

Baptista, J.M.

J.M. Baptista, J.L. Santos, A.S. Lage, "Mach-Zehnder and Michelson topologies for self-referencing fiber optic intensity sensors," Opt. Eng. 39, 1636-1644 (2000).
[CrossRef]

Diaz, S.

Lage, A.S.

J.M. Baptista, J.L. Santos, A.S. Lage, "Mach-Zehnder and Michelson topologies for self-referencing fiber optic intensity sensors," Opt. Eng. 39, 1636-1644 (2000).
[CrossRef]

Lallana, P.C.

C. Vázquez, J. Montalvo, P.C. Lallana, "Radio-Frequency Ring Resonators for Self-Referencing Fibre-Optic Intensity Sensors," Opt. Eng. Lett. 44, 1-2, (2005).

López-Amo, M.

MacDonald, R.I.

R.I. MacDonald, R. Nychka, "Differential Measurement Technique for Optical Fibre Sensors," Electron. Lett. 27, 2194-2196 (1991).
[CrossRef]

Montalvo, J.

C. Vázquez, J. Montalvo, P.C. Lallana, "Radio-Frequency Ring Resonators for Self-Referencing Fibre-Optic Intensity Sensors," Opt. Eng. Lett. 44, 1-2, (2005).

Nychka, R.

R.I. MacDonald, R. Nychka, "Differential Measurement Technique for Optical Fibre Sensors," Electron. Lett. 27, 2194-2196 (1991).
[CrossRef]

Santos, J.L.

J.M. Baptista, J.L. Santos, A.S. Lage, "Mach-Zehnder and Michelson topologies for self-referencing fiber optic intensity sensors," Opt. Eng. 39, 1636-1644 (2000).
[CrossRef]

Vázquez, C.

C. Vázquez, J. Montalvo, P.C. Lallana, "Radio-Frequency Ring Resonators for Self-Referencing Fibre-Optic Intensity Sensors," Opt. Eng. Lett. 44, 1-2, (2005).

Electron. Lett. (1)

R.I. MacDonald, R. Nychka, "Differential Measurement Technique for Optical Fibre Sensors," Electron. Lett. 27, 2194-2196 (1991).
[CrossRef]

Opt. Eng. (1)

J.M. Baptista, J.L. Santos, A.S. Lage, "Mach-Zehnder and Michelson topologies for self-referencing fiber optic intensity sensors," Opt. Eng. 39, 1636-1644 (2000).
[CrossRef]

Opt. Eng. Lett. (1)

C. Vázquez, J. Montalvo, P.C. Lallana, "Radio-Frequency Ring Resonators for Self-Referencing Fibre-Optic Intensity Sensors," Opt. Eng. Lett. 44, 1-2, (2005).

Opt. Express (1)

Opt. Lett. (1)

Optics Letters (1)

S. Abad, M. López-Amo, "Single and double distributed optical amplifier fiber bus networks with wavelength-division multiplexing for photonic sensors," Optics Letters 24, 805-807 (1999).
[CrossRef]

Other (2)

J. Montalvo, C. Vázquez, D.S. Montero, "Frequency response of two ring-resonators in series using fibre Bragg Gratings," in Proc. Fourth Spanish Meeting on Optoelectronics (OPTOEL‘05), pp. 201-205 (2005).

C. Vázquez, J. Montalvo, D.S. Montero, Electronics Technology Department, Carlos III University of Madrid, 15 Butarque Street, Leganés, Madrid, are preparing a manuscript to be called "Self-referencing fiber-optic intensity sensors using Ring Resonators and Fibre Bragg Gratings."

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Proposed passive CWDM star network for intensity sensors.

Fig. 2.
Fig. 2.

Passive WDM star topology for intensity sensors using 3 dB couplers.

Fig. 3.
Fig. 3.

Maximum fibre lead lengths of star topologies using a 2-CWDM cascade (continuous line) and using 3dB 2×2 couplers (dashed line).

Fig. 4.
Fig. 4.

Last distribution state of DWDM channels for a hybrid CWDM/DWDM topology.

Fig. 5.
Fig. 5.

Remote self-referencing sensor configuration based on RR with fiber Bragg gratings.

Fig. 6.
Fig. 6.

Evaluation of self-reference parameter crosstalk between two channels at 1530 nm (lambda1) and 1550 nm (lambda2). Separation between RR reference and sensor frequencies: 30% and 40% of RR spectral periodicity, respectively.

Fig. 7.
Fig. 7.

RR and RR+FBG radio-frequency theoretical (continuous lines) and experimental (dotted lines) normalized responses for a RR and RR+FBG with K=0.11, H=0.6, γ=0.01and 100 meters loop length without optical gain.

Fig. 8.
Fig. 8.

Scheme of the experimental set up for a 4 CWDM channels sensor network.

Fig. 9.
Fig. 9.

Optical channels (a) and RF magnitude response @ 1550nm of RR+FBG (b) at reception stage after all network chain of devices and a 15 km main fibre lead. K=0.26, γ=0.01 and 100m RR fibre loop.

Tables (1)

Tables Icon

Table 1. Different losses contributions of the different network devices for the CWDM carrier at 1550nm. The main emulated fibre lead length was approximately 15 km.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P RX P TX = I L f · ( 10 2 α · L link 10 ) · ( R R I L ) 2 · I L d · R FBG log 2 ( N )
H = 10 α · L 10 · F ( m ) · ( 1 γ )
H 0 = K 1 2 · K
R M , n ( Ω ) P out , n P in , n z = exp ( j Ω ) P out , n P in , n z = exp ( j Ω ) Ω = 2 · π · f 2 · τ = P out , n ( Ω ) P out , n ( Ω = 2 · π · f 2 · τ )

Metrics