Abstract

We have theoretically investigated the transmission performance limits of all semiconductor optical amplifiers (SOA)-based 10 Gb/s wavelength division multiplexing (WDM) systems using in-line SOAs and an optical phase conjugator (OPC) based on four-wave mixing in SOAs as a mid-span spectral inversion technique. With a verified numerical model of SOAs, we have found that the crosstalk from SOAs in OPC is a dominant factor to limit the number of channels in WDM systems. In order to increase the available number of channels, we optimize the input optical power and the injection current to SOAs in OPC with using a reservoir channel in inline SOAs. All SOA-based 10 Gb/s WDM systems using the OPC can transmit 16 channel signals up to 240 km distance with a 3 dB power penalty.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck and R. M. Jopson, "Dispersion compensation for optical fiber systems," in Optical Fiber Telecommunications III A, I. P. Kaminow and T. L. Koch, eds. (Academic Press, San Diego, 1997).
  2. T. Ono, Y. Yano, and K. Fukuchi, "Demonstration of high-dispersion tolerance of 20-Gbit/s optical duobinary signal generated by a low-pass filtering method," OFC 1997, paper ThH1.
  3. B. Kim, J. Jeong, J. Lee, H. Lee, H. Kim, S. K. Kim, Y. Kim, S. Hwang, Y. Oh, and C. Shim, "Improvement of dispersion tolerance for electrical-binary-signal-based duobinary transmitters," Opt. Express 13, 5100-5105 (2005).
    [CrossRef] [PubMed]
  4. S. L. Jansen, S. Spalter, G-D. Khoe, Huug de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photon. Technol. Lett. 16, 1763-1765 (2004).
    [CrossRef]
  5. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
    [CrossRef]
  6. H. Wei and D. Plant, "Simultaneous nonlinearity suppression and wide-band dispersion compensation using optical phase conjugation," Opt. Express 12, 1938-1958 (2004).
    [CrossRef] [PubMed]
  7. P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
    [CrossRef]
  8. A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, "WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation," Electron. Lett. 41,151-152, (2005).
    [CrossRef]
  9. L. Spiekman and D. Zimmerman, "Optical amplification for metro: EDFA/EDWA amplets & semioconductor technologies," OFC 2003, paper ThC5.
  10. Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
    [CrossRef]
  11. L. Spiekman, "Semiconductor Optical Amplifiers," in Optical Fiber Telecommunications IV A, I. Kaminow and T. Li, eds. (Academic Press, San Diego, 2002).
  12. M. A. Summerfield and R. S. Tucker, "Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 5, 839-850, (1993).
    [CrossRef]
  13. A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
    [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics. 2nd ed. (Academic Press, San Diego, 1995), Chapter 2.
  15. S. Kim and J. Jeong, "Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems," Optics Commun. 175, 109-123 (2000).
    [CrossRef]
  16. A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
    [CrossRef]
  17. A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
    [CrossRef]
  18. T. Mukai, K. Inoue, and T , Saitoh, "Signal gain saturation in two-channel common amplification using a 1.5 μm InGaAsP traveling wave laser amplifier," Electron. Lett. 23, 396-397 (1987).
    [CrossRef]
  19. G. P. Agrawal, "Amplifier-induced crosstalk in multichannel coherent lightwave systems," Electron. Lett. 23, 1175-1177 (1987).
    [CrossRef]
  20. G. O. Magnus and N. A. Olsson, "Crosstalk between intensity-modulated wavelength-division multiplexed signals in a semiconductor laser amplifier," J. Quantum Electron. QE-24, 52-59 (1988).
  21. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
    [CrossRef]
  22. K.-P. Ho, S.-K. Liaw, and C. Lin, "Reduction of semiconductor laser amplifier induced distortion and crosstalk for WDM systems using light injection," Electron. Lett. 32, 2210-2211 (1996).
    [CrossRef]

2006

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

2005

B. Kim, J. Jeong, J. Lee, H. Lee, H. Kim, S. K. Kim, Y. Kim, S. Hwang, Y. Oh, and C. Shim, "Improvement of dispersion tolerance for electrical-binary-signal-based duobinary transmitters," Opt. Express 13, 5100-5105 (2005).
[CrossRef] [PubMed]

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, "WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation," Electron. Lett. 41,151-152, (2005).
[CrossRef]

2004

H. Wei and D. Plant, "Simultaneous nonlinearity suppression and wide-band dispersion compensation using optical phase conjugation," Opt. Express 12, 1938-1958 (2004).
[CrossRef] [PubMed]

S. L. Jansen, S. Spalter, G-D. Khoe, Huug de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photon. Technol. Lett. 16, 1763-1765 (2004).
[CrossRef]

2002

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

2000

S. Kim and J. Jeong, "Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems," Optics Commun. 175, 109-123 (2000).
[CrossRef]

1999

Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
[CrossRef]

1998

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

1997

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

1996

K.-P. Ho, S.-K. Liaw, and C. Lin, "Reduction of semiconductor laser amplifier induced distortion and crosstalk for WDM systems using light injection," Electron. Lett. 32, 2210-2211 (1996).
[CrossRef]

1993

M. A. Summerfield and R. S. Tucker, "Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 5, 839-850, (1993).
[CrossRef]

1991

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

1988

G. O. Magnus and N. A. Olsson, "Crosstalk between intensity-modulated wavelength-division multiplexed signals in a semiconductor laser amplifier," J. Quantum Electron. QE-24, 52-59 (1988).

1987

T. Mukai, K. Inoue, and T , Saitoh, "Signal gain saturation in two-channel common amplification using a 1.5 μm InGaAsP traveling wave laser amplifier," Electron. Lett. 23, 396-397 (1987).
[CrossRef]

G. P. Agrawal, "Amplifier-induced crosstalk in multichannel coherent lightwave systems," Electron. Lett. 23, 1175-1177 (1987).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, "Amplifier-induced crosstalk in multichannel coherent lightwave systems," Electron. Lett. 23, 1175-1177 (1987).
[CrossRef]

Calabro, S.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

Chowdhury, A.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, "WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation," Electron. Lett. 41,151-152, (2005).
[CrossRef]

Contestabile, G.

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

Cristiani, I.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

Dall'Ara, R.

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

Degiorgio, V.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

Doerr, C. R.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, "WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation," Electron. Lett. 41,151-152, (2005).
[CrossRef]

D'Ottavi, A.

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

Essiambre, R.-J.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, "WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation," Electron. Lett. 41,151-152, (2005).
[CrossRef]

Fejer, M. M.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

Geraghty, D. F.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

Griggio, P.

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

Guekos, G.

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

Ho, K.-P.

K.-P. Ho, S.-K. Liaw, and C. Lin, "Reduction of semiconductor laser amplifier induced distortion and crosstalk for WDM systems using light injection," Electron. Lett. 32, 2210-2211 (1996).
[CrossRef]

Hunziker, G.

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

Huug de Waardt, G-D.

S. L. Jansen, S. Spalter, G-D. Khoe, Huug de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photon. Technol. Lett. 16, 1763-1765 (2004).
[CrossRef]

Hwang, S.

Inoue, K.

T. Mukai, K. Inoue, and T , Saitoh, "Signal gain saturation in two-channel common amplification using a 1.5 μm InGaAsP traveling wave laser amplifier," Electron. Lett. 23, 396-397 (1987).
[CrossRef]

Jansen, S. L.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

S. L. Jansen, S. Spalter, G-D. Khoe, Huug de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photon. Technol. Lett. 16, 1763-1765 (2004).
[CrossRef]

Jeong, J.

B. Kim, J. Jeong, J. Lee, H. Lee, H. Kim, S. K. Kim, Y. Kim, S. Hwang, Y. Oh, and C. Shim, "Improvement of dispersion tolerance for electrical-binary-signal-based duobinary transmitters," Opt. Express 13, 5100-5105 (2005).
[CrossRef] [PubMed]

S. Kim and J. Jeong, "Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems," Optics Commun. 175, 109-123 (2000).
[CrossRef]

Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
[CrossRef]

Kemmerer, C. T.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

Khoe, G-D.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

S. L. Jansen, S. Spalter, G-D. Khoe, Huug de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photon. Technol. Lett. 16, 1763-1765 (2004).
[CrossRef]

Kim, B.

Kim, H.

Kim, S.

S. Kim and J. Jeong, "Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems," Optics Commun. 175, 109-123 (2000).
[CrossRef]

Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
[CrossRef]

Kim, S. K.

Kim, Y.

B. Kim, J. Jeong, J. Lee, H. Lee, H. Kim, S. K. Kim, Y. Kim, S. Hwang, Y. Oh, and C. Shim, "Improvement of dispersion tolerance for electrical-binary-signal-based duobinary transmitters," Opt. Express 13, 5100-5105 (2005).
[CrossRef] [PubMed]

Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
[CrossRef]

Ko, J.

Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
[CrossRef]

Korotky, S. K.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

Krummrich, P. M.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

Langrock, C.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

Lee, H.

B. Kim, J. Jeong, J. Lee, H. Lee, H. Kim, S. K. Kim, Y. Kim, S. Hwang, Y. Oh, and C. Shim, "Improvement of dispersion tolerance for electrical-binary-signal-based duobinary transmitters," Opt. Express 13, 5100-5105 (2005).
[CrossRef] [PubMed]

Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
[CrossRef]

Lee, J.

Lee, R. B.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

Liaw, S.-K.

K.-P. Ho, S.-K. Liaw, and C. Lin, "Reduction of semiconductor laser amplifier induced distortion and crosstalk for WDM systems using light injection," Electron. Lett. 32, 2210-2211 (1996).
[CrossRef]

Lin, C.

K.-P. Ho, S.-K. Liaw, and C. Lin, "Reduction of semiconductor laser amplifier induced distortion and crosstalk for WDM systems using light injection," Electron. Lett. 32, 2210-2211 (1996).
[CrossRef]

Magnus, G. O.

G. O. Magnus and N. A. Olsson, "Crosstalk between intensity-modulated wavelength-division multiplexed signals in a semiconductor laser amplifier," J. Quantum Electron. QE-24, 52-59 (1988).

Marazzi, L.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

Martelli, E.

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

Martinelli, M.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

Mathur, A.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

Minford, W. J.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

Minzioni, P.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

Moser, D. T.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

Mukai, T.

T. Mukai, K. Inoue, and T , Saitoh, "Signal gain saturation in two-channel common amplification using a 1.5 μm InGaAsP traveling wave laser amplifier," Electron. Lett. 23, 396-397 (1987).
[CrossRef]

Nagel, J.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

Oh, Y.

Olsson, N. A.

G. O. Magnus and N. A. Olsson, "Crosstalk between intensity-modulated wavelength-division multiplexed signals in a semiconductor laser amplifier," J. Quantum Electron. QE-24, 52-59 (1988).

Paiella, R.

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

Paoletti, A.

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

Plant, D.

Raybon, G.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, "WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation," Electron. Lett. 41,151-152, (2005).
[CrossRef]

Saitoh, T

T. Mukai, K. Inoue, and T , Saitoh, "Signal gain saturation in two-channel common amplification using a 1.5 μm InGaAsP traveling wave laser amplifier," Electron. Lett. 23, 396-397 (1987).
[CrossRef]

Schiffini, A.

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

Shim, C.

Sohler, W.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

Spalter, S.

S. L. Jansen, S. Spalter, G-D. Khoe, Huug de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photon. Technol. Lett. 16, 1763-1765 (2004).
[CrossRef]

Spano, P.

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

Spinnler, B.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

Suche, H.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

Summerfield, M. A.

M. A. Summerfield and R. S. Tucker, "Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 5, 839-850, (1993).
[CrossRef]

Tucker, R. S.

M. A. Summerfield and R. S. Tucker, "Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 5, 839-850, (1993).
[CrossRef]

Vahala, K. J.

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

van den Borne, D.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

Verdiell, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

Veselka, J. J.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

Waardt, H.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

Wei, H.

Ziari, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

Electron. Lett.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, "WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation," Electron. Lett. 41,151-152, (2005).
[CrossRef]

A. Schiffini, A. Paoletti, P. Griggio, P. Minzioni, G. Contestabile, A. D'Ottavi, and E. Martelli, "4x40 Gbit/s transmission in 500 km long, dispersion-managed link, with in-line all-optical wavelength conversion," Electron. Lett. 38, 1558-1560 (2002).
[CrossRef]

T. Mukai, K. Inoue, and T , Saitoh, "Signal gain saturation in two-channel common amplification using a 1.5 μm InGaAsP traveling wave laser amplifier," Electron. Lett. 23, 396-397 (1987).
[CrossRef]

G. P. Agrawal, "Amplifier-induced crosstalk in multichannel coherent lightwave systems," Electron. Lett. 23, 1175-1177 (1987).
[CrossRef]

K.-P. Ho, S.-K. Liaw, and C. Lin, "Reduction of semiconductor laser amplifier induced distortion and crosstalk for WDM systems using light injection," Electron. Lett. 32, 2210-2211 (1996).
[CrossRef]

IEEE J. J. Sel. Top. Quantum Electron.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 3, 1146-1155, (1997).
[CrossRef]

M. A. Summerfield and R. S. Tucker, "Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers," IEEE J. J. Sel. Top. Quantum Electron. 5, 839-850, (1993).
[CrossRef]

IEEE J. Lightw. Technol.

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabro, H. Suche, P. M. Krummrich, W. Sohler, G-D. Khoe, and H. Waardt, "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission," IEEE J. Lightw. Technol. 24, 54-64 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Kim, H. Lee, S. Kim, J. Ko, and J. Jeong, "Analysis of frequency chirping and extinction ratio of optical phase conjugate signals by four-wave mixing in SOA's," IEEE J. Sel. Top. Quantum Electron. 5, 873-879, (1999).
[CrossRef]

IEEE Photon. Technol. Lett

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, "Dispersion penalty reduction using an optical modulator with adjustable chirp," IEEE Photon. Technol. Lett 3, 916-918 (1991).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, "Experimental Demonstration of Nonlinearity and Dispersion Compensation in an Embedded Link by Optical Phase Conjugation," IEEE Photon. Technol. Lett. 18, 995-997 (2006).
[CrossRef]

A. D'Ottavi, P. Spano, G. Hunziker, R. Paiella, R. Dall'Ara, G. Guekos, and K. J. Vahala, "Wavelength conversion at 10 Gb/s by four-wave mixing over a 30-nm interval," IEEE Photon. Technol. Lett. 10, 952-954, (1998).
[CrossRef]

S. L. Jansen, S. Spalter, G-D. Khoe, Huug de Waardt, H. E. Escobar, L. Marshall, and M. Sher, "16×40 Gb/s over 800 km of SSMF using mid-link spectral inversion," IEEE Photon. Technol. Lett. 16, 1763-1765 (2004).
[CrossRef]

J. Quantum Electron.

G. O. Magnus and N. A. Olsson, "Crosstalk between intensity-modulated wavelength-division multiplexed signals in a semiconductor laser amplifier," J. Quantum Electron. QE-24, 52-59 (1988).

Opt. Express

Optics Commun.

S. Kim and J. Jeong, "Transmission performance on frequency response of receivers and chirping shape of transmitters for 10 Gb/s LiNbO3 modulator based lightwave systems," Optics Commun. 175, 109-123 (2000).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics. 2nd ed. (Academic Press, San Diego, 1995), Chapter 2.

L. Spiekman, "Semiconductor Optical Amplifiers," in Optical Fiber Telecommunications IV A, I. Kaminow and T. Li, eds. (Academic Press, San Diego, 2002).

L. Spiekman and D. Zimmerman, "Optical amplification for metro: EDFA/EDWA amplets & semioconductor technologies," OFC 2003, paper ThC5.

A. H. Gnauck and R. M. Jopson, "Dispersion compensation for optical fiber systems," in Optical Fiber Telecommunications III A, I. P. Kaminow and T. L. Koch, eds. (Academic Press, San Diego, 1997).

T. Ono, Y. Yano, and K. Fukuchi, "Demonstration of high-dispersion tolerance of 20-Gbit/s optical duobinary signal generated by a low-pass filtering method," OFC 1997, paper ThH1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of describing wave propagation on a SOA model based on the timedependent TMM. In every section, the complex pulse envelope was calculated.

Fig. 2.
Fig. 2.

Calculated eye diagrams of wavelength converted signals in SOAs with a) large (22dB) and b) small (12 dB) pump-to-probe ratio. In the case of 22 dB, the input signals do not saturate SOAs.

Fig. 3.
Fig. 3.

Contour plots of calculated receiver sensitivities for the injection current and total input optical power to OPC with a) 2, b) 4, c) 8, and d) 16 channels. The optimum region of BER characteristics means that the phase conjugated signals have the lowest crosstalk and the highest OSNR.

Fig. 4.
Fig. 4.

Conversion efficiency of the OPC for 16 channels. Input power to the OPC was changed from 0 dBm to -6 dBm.

Fig. 5.
Fig. 5.

Transmission configuration using in-line SOAs and an OPC based on FWM in SOAs.

Fig. 6.
Fig. 6.

Calculated eye diagrams at a) back-to-back, b) first 60 km SMF, c) OPC, and d) second 60 km SMF for two channels. Full dispersion compensation is done after OPC and the second 60 km transmission.

Fig. 7.
Fig. 7.

Contour plots of calculated receiver sensitivities for transmission distance and number of channels without using a reservoir channel. The possible transmission distance for 16 channels was up to 120 km with a 2 dB average power penalty.

Fig. 8.
Fig. 8.

Contour plots of calculated receiver sensitivities for transmission distance and number of channels with using a reservoir channel. It was possible to transmit over 240 km with 3 dB average power penalty.

Tables (1)

Tables Icon

Table 1. Optimized parameters and power penalties of OPC with different total input optical power to in-line SOAs for different number of channels

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A p z + 1 v g A p t = G p A p ( z , t ) + μ p ( z , t )
A s , c z + 1 v g A s , c t = G s , c A s , c ( z , t ) + F s , c { A p 2 ( z , t ) A c , s ( z , t ) + 2 A p ( z , t ) B p ( z , t ) B c , s ( z , t ) } + μ s , c ( z , t )
G p , s , c = ( 1 2 g ̅ p , s , c i 2 α Γ p , s , c g p , s , c ) ( 1 + w = p , s , c ( A w 2 + B w 2 ) P Sat )
F s , c = ( 1 2 g ̅ s , c i 2 α Γ s , c g s , c ) h CDP ( ± Δ ω ) P Sat 1 2 ( 1 i α CH ) ( g ̅ s , c ε CH 1 + g s , c ε CH 2 ) h CH ( Δ ω )
1 2 ( 1 i α SHB ) g ̅ s , c ε SHB h SHB ( Δ ω )
h CDP 1 ( Δ ω ) = ( 1 i Δ ω τ 2 ) ( 1 Δ ω τ s )
h CH 1 ( Δ ω ) = ( 1 i Δ ω τ 2 ) ( 1 Δ ω τ 1 )
h SHB 1 ( Δ ω ) = ( 1 i Δ ω τ 2 )
g i , w ( N i , λ w ) = a 0 ( N i N 0 ) a 1 ( λ w λ N ) 2 + a 3 ( λ w λ N ) 3
λ N = λ o a 2 ( N N o )
N i t = I q V N i ( c 1 + c 2 N i + c 3 N i 2 ) w = p , s , c v g Γ w g w , i S w , i

Metrics