Abstract

Current adaptive optics flood-illumination retina cameras operate at low frame rates, acquiring retinal images below seven Hz, which restricts their research and clinical utility. Here we investigate a novel bench top flood-illumination camera that achieves significantly higher frame rates using strobing fiber-coupled superluminescent and laser diodes in conjunction with a scientific-grade CCD. Source strength was sufficient to obviate frame averaging, even for exposures as short as 1/3 msec. Continuous frame rates of 10, 30, and 60 Hz were achieved for imaging 1.8, 0.8, and 0.4 deg retinal patches, respectively. Short-burst imaging up to 500 Hz was also achieved by temporarily storing sequences of images on the CCD. High frame rates, short exposure durations (1 msec), and correction of the most significant aberrations of the eye were found necessary for individuating retinal blood cells and directly measuring cellular flow in capillaries. Cone videos of dark adapted eyes showed a surprisingly rapid fluctuation (~1 Hz) in the reflectance of single cones. As further demonstration of the value of the camera, we evaluated the tradeoff between exposure duration and image blur associated with retina motion.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).
  2. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  3. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye’s aberrations," Opt. Express 8, 631-643 (2001).
    [CrossRef] [PubMed]
  4. N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, "Small table-top adaptive optical systems for human retinal imaging", in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, R. K. Tyson, eds., Proc. SPIE 4825, 99-108 (2002).
    [CrossRef]
  5. A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
    [CrossRef]
  6. D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
    [CrossRef] [PubMed]
  7. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
    [CrossRef]
  8. P. Fournier, G. R. G. Erry, L. J. Otten, A. Larichev, N. Irochnikov, "Next generation high resolution adaptive optics fundus imager," in 5th International Workshop on Adaptive Optics for Industry and Medicine, edited by Wenhan Jiang, Proceedings of SPIE Vol. 6018 (SPIE, Bellingham, WA, 2005).
  9. A. W. Dreher, J. F. Bille, and R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989).
    [CrossRef] [PubMed]
  10. A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
    [PubMed]
  11. D. T. Miller, J. Qu, R. S. Jonnal and K. Thorn, "Coherence gating and adaptive optics in the eye," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE 4956, 65-72 (2003).
    [CrossRef]
  12. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  13. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
    [CrossRef] [PubMed]
  14. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
    [CrossRef] [PubMed]
  15. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  16. L. A. Riggs and J. C. Armington, J.C., "Motions of the retinal image during fixation," J. Opt. Soc. Am. 44, 315-321 (1954).
    [CrossRef] [PubMed]
  17. I. Iglesias and P. Artal, "High-resolution retinal images obtained by deconvolution from wave-front sensing," Opt. Lett. 25, 1804-1806 (2000).
    [CrossRef]
  18. K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, "Adaptive optics flood-illuminated camera for high speed retinal imaging," Invest. Ophthalmol. Visual Sci. 44, E-Abstract 1002 (2003).
  19. J. Rha, R. S. Jonnal, Y. Zhang, and D. T. Miller, "Rapid fluctuation in the reflectance of single cones and its dependence on photopigment bleaching," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 3546 (2005).
  20. K. E. Thorn, R. S. Jonnal, J. Qu, and D. T. Miller, "High-speed imaging of the retinal microvasculature with adaptive optics," Society of Photo-Optical Instrumentation Engineers' 2004 International Symposium on Ophthalmic Technologies XIV, San Jose, CA, January 24-25, 2004.
  21. J. Rha, R. S. Jonnal, Y. Zhang and D. T. Miller, "Video rate imaging with a conventional flood illuminated adaptive optics retin,a camera," 88th Optical Society of America Annual Meeting, Rochester, New York, October 10-14, 2004.
  22. ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, FL, 2000).
  23. B. Crosignani, B. Diano, and P. Di Porto, "Speckle-pattern visibility of light transmitted through a multimode optical fiber," J. Opt. Soc. Am. 66, 1312-1313 (1976).
    [CrossRef]
  24. B. Dingel and S. Kawata, "Laser-diode microscope with fiber illumination," Opt. Commun. 93, 27-32 (1992).
    [CrossRef]
  25. E. G. Rawson, J. W. Goodman, R. E. Norton, "Frequency dependence of modal noise in multimode optical fibers," J. Opt. Soc. Am. 70, 968-976 (1980).
    [CrossRef]
  26. F. M. MimsIII, A Practical Introduction to Lightwave Communications (Howard W. Sams & Co., Indiana, 1982).
  27. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004).
    [PubMed]
  28. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Indiana University AO-OCT system," in Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications, J. Porter, et al., eds. (John Wiley & Sons, New Jersey, In Press).
  29. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
    [CrossRef] [PubMed]
  30. D. R. Williams, "Topography of the foveal cone mosaic in the living human eye," Vision Res. 28, 433-454, 1988.
    [CrossRef] [PubMed]
  31. A. G. Bennett, A. R. Rudnicka, D. F. Edgar, "Improvements on Littmann’s method of determining the size of retinal features by fundus photography," Graefes Arch. Clin. Exp. Ophthalmol.,  232, 361-367 (1994).
    [CrossRef] [PubMed]
  32. M. Iwasaki and H. Inomata, "Relation between superficial capillaries and foveal structures in the human retina," Invest. Ophthalmol. Visual Sci. 27, 1698-1705 (1986).
  33. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef] [PubMed]
  34. A. R. Wade, F. W. Fitzke, "In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO", Lasers Light Ophthalmol. 8, 129-136 (1998).
  35. A. Pallikaris, D. R. Williams, and H. Hofer, "The Reflectance of Single Cones in the Living Human Eye", Invest. Ophthalmol. Visual Sci. 44, 4580 - 4592 (2003).
    [CrossRef]
  36. H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
    [PubMed]
  37. J. A. Martin and A. Roorda, "Direct and noninvaisve assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
    [CrossRef] [PubMed]

2005 (4)

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

J. A. Martin and A. Roorda, "Direct and noninvaisve assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef] [PubMed]

2004 (4)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004).
[PubMed]

B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef] [PubMed]

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Pallikaris, D. R. Williams, and H. Hofer, "The Reflectance of Single Cones in the Living Human Eye", Invest. Ophthalmol. Visual Sci. 44, 4580 - 4592 (2003).
[CrossRef]

2002 (3)

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
[CrossRef]

D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

1998 (1)

A. R. Wade, F. W. Fitzke, "In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO", Lasers Light Ophthalmol. 8, 129-136 (1998).

1997 (1)

1995 (1)

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
[PubMed]

1994 (1)

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, "Improvements on Littmann’s method of determining the size of retinal features by fundus photography," Graefes Arch. Clin. Exp. Ophthalmol.,  232, 361-367 (1994).
[CrossRef] [PubMed]

1992 (1)

B. Dingel and S. Kawata, "Laser-diode microscope with fiber illumination," Opt. Commun. 93, 27-32 (1992).
[CrossRef]

1990 (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

D. R. Williams, "Topography of the foveal cone mosaic in the living human eye," Vision Res. 28, 433-454, 1988.
[CrossRef] [PubMed]

1986 (1)

M. Iwasaki and H. Inomata, "Relation between superficial capillaries and foveal structures in the human retina," Invest. Ophthalmol. Visual Sci. 27, 1698-1705 (1986).

1980 (1)

1976 (1)

1954 (1)

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004).
[PubMed]

Armington, J. C.

Artal, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

I. Iglesias and P. Artal, "High-resolution retinal images obtained by deconvolution from wave-front sensing," Opt. Lett. 25, 1804-1806 (2000).
[CrossRef]

Bartsch, D. U.

D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
[CrossRef] [PubMed]

Bennett, A. G.

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, "Improvements on Littmann’s method of determining the size of retinal features by fundus photography," Graefes Arch. Clin. Exp. Ophthalmol.,  232, 361-367 (1994).
[CrossRef] [PubMed]

Bille, J. F.

Bouma, B. E.

Bower, B.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004).
[PubMed]

Campbell, M. C. W.

Cense, B.

Chen, L.

Chen, T. C.

Choi, S.

Crosignani, B.

Curcio, C. A.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

de Boer, J. F.

Di Porto, P.

Diano, B.

Dingel, B.

B. Dingel and S. Kawata, "Laser-diode microscope with fiber illumination," Opt. Commun. 93, 27-32 (1992).
[CrossRef]

Donnelly, W. J.

Dreher, A. W.

Drexler, W.

Edgar, D. F.

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, "Improvements on Littmann’s method of determining the size of retinal features by fundus photography," Graefes Arch. Clin. Exp. Ophthalmol.,  232, 361-367 (1994).
[CrossRef] [PubMed]

Fainman, S.

D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
[CrossRef] [PubMed]

Fercher, A. F.

Fernández, E. J.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Fitzke, F. W.

A. R. Wade, F. W. Fitzke, "In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO", Lasers Light Ophthalmol. 8, 129-136 (1998).

Freeman, W. R.

D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
[CrossRef] [PubMed]

Gendron, E.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Glanc, M.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Goodman, J. W.

Hebert, T. J.

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Hermann, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Hofer, H.

A. Pallikaris, D. R. Williams, and H. Hofer, "The Reflectance of Single Cones in the Living Human Eye", Invest. Ophthalmol. Visual Sci. 44, 4580 - 4592 (2003).
[CrossRef]

H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye’s aberrations," Opt. Express 8, 631-643 (2001).
[CrossRef] [PubMed]

Honda, Y.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
[PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004).
[PubMed]

Iglesias, I.

Inomata, H.

M. Iwasaki and H. Inomata, "Relation between superficial capillaries and foveal structures in the human retina," Invest. Ophthalmol. Visual Sci. 27, 1698-1705 (1986).

Iroshnikov, N. G.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
[CrossRef]

Ivanov, P. V.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
[CrossRef]

Iwasaki, M.

M. Iwasaki and H. Inomata, "Relation between superficial capillaries and foveal structures in the human retina," Invest. Ophthalmol. Visual Sci. 27, 1698-1705 (1986).

Izatt, J.

Jones, S.

Jonnal, R.

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Kawata, S.

B. Dingel and S. Kawata, "Laser-diode microscope with fiber illumination," Opt. Commun. 93, 27-32 (1992).
[CrossRef]

Kimura, H.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
[PubMed]

Kiryu, J.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
[PubMed]

Lacombe, F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Lafaille, D.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Larichev, A. V.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
[CrossRef]

Laut, S.

Le Gargasson, J.-F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Leitgeb, R.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Léna, P.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

Liang, J.

Martin, J. A.

J. A. Martin and A. Roorda, "Direct and noninvaisve assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef] [PubMed]

Miller, D.

Miller, D. T.

Nassif, N. A.

Nishiwaki, H.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
[PubMed]

Norton, R. E.

Ogura, Y.

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
[PubMed]

Olivier, S.

Otten, L. J.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
[CrossRef]

Pallikaris, A.

A. Pallikaris, D. R. Williams, and H. Hofer, "The Reflectance of Single Cones in the Living Human Eye", Invest. Ophthalmol. Visual Sci. 44, 4580 - 4592 (2003).
[CrossRef]

Park, B. H.

Pierce, M. C.

Považay, B.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Queener, H.

Rawson, E. G.

Rha, J.

Riggs, L. A.

Romero-Borja, F.

Roorda, A.

J. A. Martin and A. Roorda, "Direct and noninvaisve assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. J. Donnelly, H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
[PubMed]

Rudnicka, A. R.

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, "Improvements on Littmann’s method of determining the size of retinal features by fundus photography," Graefes Arch. Clin. Exp. Ophthalmol.,  232, 361-367 (1994).
[CrossRef] [PubMed]

Sattmann, H.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Shmalhauzen, V. I.

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
[CrossRef]

Singer, B.

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

Sun, P. C.

D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
[CrossRef] [PubMed]

Tearney, G. J.

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004).
[PubMed]

Unterhuber, A.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Wade, A. R.

A. R. Wade, F. W. Fitzke, "In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO", Lasers Light Ophthalmol. 8, 129-136 (1998).

Weinreb, R. N.

Werner, J.

Williams, D. R.

Yamauchi, Y.

Yoon, G. Y.

Yun, S.

Zawadzki, R.

Zhang, Y.

Zhao, M.

Zhu, L.

D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Graefes Arch. Clin. Exp. Ophthalmol. (1)

A. G. Bennett, A. R. Rudnicka, D. F. Edgar, "Improvements on Littmann’s method of determining the size of retinal features by fundus photography," Graefes Arch. Clin. Exp. Ophthalmol.,  232, 361-367 (1994).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

H. Nishiwaki, Y. Ogura, H. Kimura, J. Kiryu, and Y. Honda, "Quantitative evaluation of leukocyte dynamics in retinal microcirculation," Invest. Ophthalmol. Vis. Sci. 36, 123-130 (1995).
[PubMed]

Invest. Ophthalmol. Visual Sci. (2)

A. Pallikaris, D. R. Williams, and H. Hofer, "The Reflectance of Single Cones in the Living Human Eye", Invest. Ophthalmol. Visual Sci. 44, 4580 - 4592 (2003).
[CrossRef]

M. Iwasaki and H. Inomata, "Relation between superficial capillaries and foveal structures in the human retina," Invest. Ophthalmol. Visual Sci. 27, 1698-1705 (1986).

J. Biomed. Opt. (1)

D. U. Bartsch, L. Zhu, P. C. Sun, S. Fainman, and W. R. Freeman, "Retinal imaging with a low-cost micromachined membrane deformable mirror," J. Biomed. Opt. 7, 451-456 (2002).
[CrossRef] [PubMed]

J. Comp. Neurol. (1)

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Vis. (1)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, "Accuracy and precision of methods to predict the results of subjective refraction from monochromatic wavefront aberration maps," J. Vis. 4, 329-351 (2004).
[PubMed]

Lasers Light Ophthalmol. (1)

A. R. Wade, F. W. Fitzke, "In-vivo imaging of the human cone photoreceptor mosaic using a confocal LSO", Lasers Light Ophthalmol. 8, 129-136 (1998).

Ophthalmology (1)

J. A. Martin and A. Roorda, "Direct and noninvaisve assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, "Towards wide-field retinal imaging with adaptive optics," Opt. Commun. 230, 225-238 (2004).
[CrossRef]

B. Dingel and S. Kawata, "Laser-diode microscope with fiber illumination," Opt. Commun. 93, 27-32 (1992).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Quantum Electron. (1)

A. V. Larichev, P. V. Ivanov, N. G. Iroshnikov, V. I. Shmalhauzen, L. J. Otten, "Adaptive system for eye-fundus imaging," Quantum Electron. 32, 902-908, 2002.
[CrossRef]

Vision Res. (2)

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler W, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

D. R. Williams, "Topography of the foveal cone mosaic in the living human eye," Vision Res. 28, 433-454, 1988.
[CrossRef] [PubMed]

Other (11)

Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Indiana University AO-OCT system," in Adaptive Optics for Vision Science: Principles, Practices, Design, and Applications, J. Porter, et al., eds. (John Wiley & Sons, New Jersey, In Press).

F. M. MimsIII, A Practical Introduction to Lightwave Communications (Howard W. Sams & Co., Indiana, 1982).

K. E. Thorn, J. Qu, R. J. Jonnal, and D. T. Miller, "Adaptive optics flood-illuminated camera for high speed retinal imaging," Invest. Ophthalmol. Visual Sci. 44, E-Abstract 1002 (2003).

J. Rha, R. S. Jonnal, Y. Zhang, and D. T. Miller, "Rapid fluctuation in the reflectance of single cones and its dependence on photopigment bleaching," Invest. Ophthalmol. Visual Sci. 46, E-Abstract 3546 (2005).

K. E. Thorn, R. S. Jonnal, J. Qu, and D. T. Miller, "High-speed imaging of the retinal microvasculature with adaptive optics," Society of Photo-Optical Instrumentation Engineers' 2004 International Symposium on Ophthalmic Technologies XIV, San Jose, CA, January 24-25, 2004.

J. Rha, R. S. Jonnal, Y. Zhang and D. T. Miller, "Video rate imaging with a conventional flood illuminated adaptive optics retin,a camera," 88th Optical Society of America Annual Meeting, Rochester, New York, October 10-14, 2004.

ANSI, American National Standard for the Safe Use of Lasers, ANSI Z136.1 (Laser Institute of America, Orlando, FL, 2000).

R. K. Tyson, Principles of Adaptive Optics (Academic Press, New York, 1998).

N. Ling, Y. Zhang, X. Rao, X. Li, C. Wang, Y. Hu, and W. Jiang, "Small table-top adaptive optical systems for human retinal imaging", in High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, R. K. Tyson, eds., Proc. SPIE 4825, 99-108 (2002).
[CrossRef]

D. T. Miller, J. Qu, R. S. Jonnal and K. Thorn, "Coherence gating and adaptive optics in the eye," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE 4956, 65-72 (2003).
[CrossRef]

P. Fournier, G. R. G. Erry, L. J. Otten, A. Larichev, N. Irochnikov, "Next generation high resolution adaptive optics fundus imager," in 5th International Workshop on Adaptive Optics for Industry and Medicine, edited by Wenhan Jiang, Proceedings of SPIE Vol. 6018 (SPIE, Bellingham, WA, 2005).

Supplementary Material (11)

» Media 1: AVI (1173 KB)     
» Media 2: AVI (1485 KB)     
» Media 3: AVI (1116 KB)     
» Media 4: AVI (2545 KB)     
» Media 5: AVI (1074 KB)     
» Media 6: AVI (534 KB)     
» Media 7: AVI (527 KB)     
» Media 8: AVI (2321 KB)     
» Media 9: AVI (2313 KB)     
» Media 10: AVI (512 KB)     
» Media 11: AVI (2371 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

(Left) Layout of the adaptive optics retina camera. The camera consists of three sub-systems: (1) AO for correction of ocular aberrations, (2) pupil retro-illumination and fixation channels for alignment of the subject’s eye, and (3) retinal imaging using a scientific-grade CCD and flood illumination light sources consisting of an SLD and laser diode cascaded with multimode fibers. Details of the camera are included in the text. (Inset) SLD light launched into the multimode fiber is distributed among the fiber modes that propagate along the fiber length at different velocities and reduce the spatial coherence of the SLD light.

Fig. 2.
Fig. 2.

Measured RMS wavefront error traces with and without a real-time software filter that suppresses erroneous SHWS measurements, such as those caused by eye blinks. Note the stability of the RMS wavefront error immediately following each blink (as indicated by the black arrows) when the filter is employed compared to when it is not.

Fig. 3.
Fig. 3.

Temporal sequence for rapidly collecting (top) four and (bottom) eight images realized by temporarily storing the images on the CCD array. After each exposure, the electron charge on the CCD was rapidly shifted down columns to an unexposed (masked) region of the array in less than 100 µsec. This process was repeated after each additional exposure with the last exposure followed by a read out of the entire CCD array at a rate that minimized read noise.

Fig. 4.
Fig. 4.

Average RMS wavefront error across a 6.8-mm pupil, measured in three subjects, with (dark gray) and without (light gray) AO compensation. RMS wavefront error is shown for the total aberrations (2nd through 10th order), Zernike defocus (C4), two Zernike astigmatism modes (C3 and C5), and higher order aberrations (3rd through 10th order). Error bars represent ± one standard deviation from the mean.

Fig. 5.
Fig. 5.

Images of approximately the same patch of cone photoreceptors in one subject’s eye (left) with and (right) without the SLD beam passing through the 25 m multi-mode optical fiber. Note the absence of speckle in the right image allowing the cone mosaic to be easily observed.

Fig. 6.
Fig. 6.

Individual raw conventional flood illuminated images of the cone mosaic centered at 1.25 deg. eccentricity in one subject’s eye (left) without and (right) with adaptive compensation. For both images, best correction of defocus and astigmatism was achieved with trial lenses and axial translation of the science CCD camera. The 1 deg patch of retina was illuminated by the 679 nm SLD after passing through the 25 m multimode fiber.

Fig. 7.
Fig. 7.

Raw 10 Hz flood illuminated video of the cone mosaic in one subject before and during adaptive compensation. The video was captured at 10 Hz with adaptive compensation occurring simultaneously at 15 Hz. The video runs at 10 Hz. The illumination patch subtends 1.8° at 1.4° eccentricity. Exposure duration is 2 msec. Illumination was provided by the 670 nm laser diode after passing through the 300 m multimode fiber. (1.1 MB)

Fig. 8.
Fig. 8.

Raw 30 Hz flood illuminated videos with adaptive compensation of (left) the cone mosaic, (middle) retinal vasculature, and (right) axial through focus of the retina. The illumination patch subtended 0.8°×0.8° (left, middle) and 0.67°×0.57° (right) at 1.4° (left), 2.5° (middle), and 1.25° (right) eccentricity (right). All videos were captured at 30 Hz with adaptive compensation occurring simultaneously at 15 (left) and 22 (middle, right) Hz. Frames of the through focus video were registered, which reduced the displayed field of view. The videos run at 30 Hz. Exposure duration is 2 (left) and 1 (middle, right) msec. Illumination was provided by the 670 nm laser diode after passing through the 300 meter multimode fiber. Scale bars represent 50 µm. (1.5 MB, 1.1 MB, 2.5 MB)

Fig. 9.
Fig. 9.

60 Hz flood illuminated videos with adaptive compensation of (left) the cone mosaic, and (middle, right) retinal vasculature. The illumination patch subtended 0.4° at 1.4° (left) and 2.5° (middle, right) eccentricity. All videos were captured at 60 Hz with adaptive compensation occurring simultaneously at 15 (left) and 22 (middle, right) Hz. The videos run at 30 (left, middle) Hz. The right video is identical to the middle video but runs four times slower at 7.5 Hz. Exposure duration is 2 (left) and 1 (middle, right) msec. Illumination was provided by the 670 nm laser diode after passing through the 300 m multimode fiber. Scale bars represent 25 µm. (1.0 MB, 0.5 MB, 0.5 MB)

Fig. 10.
Fig. 10.

Representative video acquired at 30 Hz in a dark adapted eye. Individual cone photoreceptors in the color-coded boxes (right) were extracted from the video. The video runs at 30 Hz. Exposure duration is 2 msec. Illumination was provided by the 670 nm laser diode after passing through the 300 meter multimode fiber. (2.3 MB)

Fig. 11.
Fig. 11.

Four-burst videos (top) without and (bottom) with adaptive compensation of a network of retinal capillaries at 1.4° eccentricity in subject RJ. The size of the retinal patch is 1 by 1/2 deg. Both videos were captured at 500 Hz using a 1 msec exposure and 1 msec delay. The videos play at 8 Hz, which is 62.5 times slower than the actual acquired rate. Due to the brevity of the videos, they are best viewed in loop mode in which the video automatically cycles. (2.3 MB)

Fig. 12.
Fig. 12.

Eight-burst video with adaptive compensation that shows a network of retinal capillaries. Retinal eccentricity is 1.6°. The size of the retinal patch is 1 by 1/4 deg. Video was captured at 500 Hz using a 1 msec exposure and 1 msec delay. The video plays at 8 Hz. (0.5MB)

Fig. 13.
Fig. 13.

Representative flood illuminated videos of the same proximal patch of cone photoreceptors in the same subject with adaptive compensation and four different exposure durations. (2.3 MB)

Fig. 14.
Fig. 14.

(left) Radially-averaged power spectra of the same proximal patch of cones in 20 consecutive video frames for exposure durations of 1/3, 1, 4, 10, 20, 33, 66, and 100 msec. (right) Power ratio is shown averaged across the two subjects and for each of the examined exposure durations. Ratio is defined as power for the 4 msec exposure divided by that for a given exposure. The ratio quantifies the relative benefit of the 4 msec exposure.

Metrics